
Learning Blazor
Build Single-Page Apps
with WebAssembly and C#

David Pine
Foreword by

Steve Sanderson

Compliments of

PROGR AMMING

“The Blazor open
source web framework
is a whole new way
to develop powerful
applications for the web.
Learning Blazor uses
tons of examples and
prescriptive code based
on David Pine’s deep
experience as a content
developer on the .NET
team to get you writing
Blazor web apps with C#
today!”

—Scott Hanselman
 Partner Program Manager,

Developer Division, Microsoft

Learning Blazor

US $59.99	 CAN $74.99
ISBN: 978-1-098-11324-7

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Take advantage of your C# skills to build UI components and
client-side experiences with .NET. With this practical guide,
you’ll learn how to use Blazor WebAssembly to develop next-
generation web experiences. Built on top of ASP.NET Core,
Blazor represents the future of .NET single-page application
investments.

Author David Pine, who focuses on .NET and Azure content
development at Microsoft, explains how WebAssembly
enables many non-JavaScript-based programming languages
to run on the client browser. In this book, you’ll learn about
real-time web functionality with ASP.NET Core SignalR and
discover strategies for bidirectional JavaScript interop. David
also covers component data binding, hierarchical event-
driven communications, in-memory state management, and
local storage.

This book shows you how to:

•	 Create a beautiful, feature-rich Blazor app

•	 Develop and localize an enterprise-scale app using GitHub
Actions and Azure Cognitive Services Translator

•	 Create advanced validation scenarios for input-based
components with forms

•	 Automatically deploy and host to Azure Static Web Apps,
and rely on HTTP services

•	 Use a geolocation service and speech synthesis and
recognition native to the browser

•	 Author a custom modal verification mechanism for validating
a user

David Pine is a senior content
developer at Microsoft, where he
focuses on .NET and Azure developer
content. He’s recognized as a Google
Developer Expert in Web Technologies
and is a Twilio Champion. Before joining
Microsoft, David was a Microsoft MVP
in Developer Technologies for several
years. He thrives in the developer
community, sharing his knowledge
through speaking engagements around
the world.

ISBN: 978-1-492-09841-6

Praise for Learning Blazor

Learning Blazor is the perfect resource for developers who are looking to build modern
web applications using bleeding-edge web technologies. David leverages his skills as a

senior content developer to help you get started with Blazor!
—Scott Hunter, VP Director

Azure Developer Experience, Microsoft

David Pine’s Learning Blazor takes developers on the perfect journey to learning how
to build and deploy their Blazor applications. David leverages his extensive content
development and presentation skills to inspire you to build Blazor web apps today.

—Maria Naggaga, Principal Product Manager Lead, ASP.NET
and .NET Interactive, Microsoft

Like its author, this book will inspire folks to try new things with Blazor and to be excited
about the possibilities of building apps it brings. David’s delightful style of writing code

as eloquent as his prose, coupled with a genuine love for .NET and using it creatively, will
make any developer fall in love with web development all over again.

—Brady Gaster, Principal Program
Manager, .NET Team, Microsoft

As an experienced Blazor developer, I learned more about localization and testing from
David Pine in 20 minutes of reading than I did in days of searching for similar insight

online. Not only is Learning Blazor an educational piece, but it’s also a great reference that
I will return to when building future Blazor applications.

—Jeff Fritz, Live Streamer and Principle Program
Manager, .NET Team, Microsoft

Learning Blazor is a well-paced guide that is perfectly suited for anyone
with .NET experience who would like to learn Blazor to build web apps,

and for anyone looking to refine their Blazor skills.
—Lana Lux, Game Developer, Tech Streamer,

and Founder of Lux Games

Learning Blazor is one of the most informative books I have ever read, and
it makes you want to start developing with WebAssembly and C# right away.

Learning Blazor uses a great storyline and practical real-world examples to explain
a modern technology and how it can be combined with JavaScript and HTML.

A must-read for every web developer.
—Fabian Gosebrink, Senior Developer, Microsoft MVP, and

Google Developer Expert, Offering Solutions Software

There are so many gems in here that you are guaranteed to learn something
regardless of your experience level. It has inspired me to add techniques and

features to my projects that I’ve never considered before.
—Cecil L. Phillip, Staff Developer Advocate, Stripe

David Pine
Foreword by

Steve Sanderson

Learning Blazor
Build Single-Page Apps

with WebAssembly and C#

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-09841-6

[LSI]

Learning Blazor
by David Pine

Copyright © 2023 David Pine. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn
Development Editor: Rita Fernando
Production Editor: Gregory Hyman
Copyeditor: Stephanie English
Proofreader: Piper Editorial Consulting, LLC

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

October 2022: First Edition

Revision History for the First Edition
2022-09-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098113247 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Blazor, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Progress Software. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098113247
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. vii

Preface. ix

1. Blazing into Blazor. 1
The Origin of Blazor 1
Blazor Hosting 3

Blazor Server 3
Blazor WebAssembly 4
Blazor Hybrid 6

Single-Page Applications, Redefined 6
Why Adopt Blazor 7

.NET’s Potential in the Browser 8

.NET Is Here to Stay 9
Familiarity 9
Safe and Secure 10
Code Reuse 10
Tooling 11
Open Source Software 13

Your First Blazor App with the .NET CLI 14
Build the App 15
Install Dev-cert 15
Run the App 16

The Code Must Live On 17
Perusing the “Learning Blazor” Sample App 19
Summary 21

iii

2. Executing the App. 23
Requesting the Initial Page 24
App Startup and Bootstrapping 25
Blazor WebAssembly App Internals 32

Detecting Client Culture at Startup 34
Layouts, Shared Components, and Navigation 35

Summary 59

3. Componentizing. 61
Design with the User in Mind 61

Leveraging “Pwned” Functionality 63
“Have I Been Pwned” Client Services 65
Restricting Access to Resources 73

The Introduction Component Says “Hi” 75
The Joke Component and Services 77

Aggregating Joke Services—Laughter Ensues 81
DI from Library Authors 88

Forecasting Local Weather 89
Summary 103

4. Customizing the User Login Experience. 105
A Bit More on Blazor Authentication 105

Client-Side Custom Authorization Message Handler Implementation 106
The Web.Client ConfigureServices Functionality 113

Native Speech Synthesis 117
Sharing and Consuming Custom Components 123
Chrome: The Overloaded Term 124

Modal Modularity and Blazor Component Hierarchies 124
Exploring Blazor Event Binding 129

Summary 137

5. Localizing the App. 139
What Is Localization? 139
The Localization Process 140
The Language Selection Component 143
Automating Translations with GitHub Actions 151
Localization in Action 154
Summary 165

6. Exemplifying Real-Time Web Functionality. 167
Defining the Server-Side Events 167

iv | Table of Contents

Exposing Twitter Streams and Chat Functionality 168
Writing Contextual RPC and Inner-Process Communication 174
Configuring the Hub Endpoint 177

Consuming Real-Time Data on the Client 181
Configuring the Client 181
Sharing a Hub Connection 182
Consuming Real-Time Data in Components 190

Summary 204

7. Using Source Generators. 205
What Are Source Generators? 205
Building a Case for Source Generators 206
C# Source Generators in Action 209

Source Generating the localStorage API 209
Source Generating the Geolocation API 215
Example Usage of the ILocalStorageService 223

Summary 231

8. Accepting Form Input with Validation. 233
The Basics of Form Submission 233
Framework-Provided Components for Forms 234
Models and Data Annotations 235

Defining Component Models 236
Defining and Consuming Validation Attributes 237

Implementing a Contact Form 240
Implementing Speech Recognition as User Input 252

Reactive Programming with the Observer Pattern 259
Managing Callbacks with a Registry 261
Applying the Speech Recognition Service to Components 263

Form Submission Validation and Verification 266
Summary 268

9. Testing All the Things. 269
Why Test? 269
Unit Testing 269

Defining Unit-Testable Code 270
Writing an Extension Method Unit Test 272

Component Testing 276
End-to-End Testing with Playwright 279
Automating Test Execution 284
Summary 286

Table of Contents | v

Appendix. Learning Blazor App Projects. 289

Index. 293

vi | Table of Contents

1 “Most Popular Technologies,” 2022 Stack Overflow Developer Survey, accessed August 18, 2022,
https://oreil.ly/7UTEc.

2 “Web Framework Benchmarks: Round 21, July 19, 2022,” TechEmpower, https://oreil.ly/EBawf.

Foreword

Web development has been a dominating feature of the software industry for over
20 years and is likely to remain so for many years to come. Industry giants continue
to invest heavily in expanding web technology’s power and flexibility, enabling an
increasing range of advanced browser-based software. While native mobile apps and
augmented reality / virtual reality apps find their place for consumer software, the
web is overwhelmingly the default UI for business apps. If you could bet on only one
application platform, you should bet on the web.

During those same 20 years, .NET (first released in 2002) has held its place as Micro‐
soft’s premiere developer toolset. Like the web, .NET continues to gain strength. It
was reinvented as cloud-first, cross-platform, and fully open source in 2016 and today
is used by about 30% of all professional software developers.1 C# has always been
considered one of the most productive languages, at the forefront of rich developer
tooling with precise code completions and a top debugging experience, and now
ASP.NET Core is one of the fastest server-side web technologies.2

The goal of Blazor is to unlock the full power of .NET for browser-based UI applica‐
tions. It’s the .NET team’s best effort to create the most productive and natural way
to create single-page application–type apps. This includes Blazor’s component-based
programming model, which takes the best aspects of many modern UI frameworks
and unifies them into something natural for .NET with its strong typing. Beyond that,
it means connecting with the rest of the .NET ecosystem, with its industry-leading
IDEs and first-class features for debugging, testing, and hot reload. Blazor’s biggest
innovation might be its flexible execution models, running server-side with UI
streaming to browsers over a websocket, directly inside the browser on WebAssem‐
bly, or as native code in mobile and desktop apps.

vii

https://oreil.ly/7UTEc
https://oreil.ly/EBawf

Learning Blazor provides both a deep and broad look at Blazor app development.
Unlike many other books, it doesn’t just focus on the easy parts of C# programming
and leave real-world complexity as an exercise for the reader. Instead, David sets out
the whole range of web development concerns—including authentication, security,
performance, localization, and deployment (CI/CD)—right in front of you, starting
from the beginning. With some focus, you’ll be able to absorb David’s broad expertise
and be equipped to take on realistic work of your own.

David is well placed to explain not just how things work today but also how they’ve
evolved to their present state and even how things may change in the future. He’s
been a well-known figure in the Blazor community for years, is well connected with
engineering leaders within Microsoft, and has an even longer history as a Microsoft
Most Valuable Professional (MVP) and a Google Developer Expert (GDE) in web
technologies. Throughout this book, you’ll find many historical details and anecdotes
that shed light on the challenges, decisions, and people who shaped web development
and .NET into the technology you’ll be using. David’s enthusiasm will propel you
through a complex landscape.

My biggest motivation when creating the first release of Blazor with Dan Roth and
Ryan Nowak was to help free web UI from its monoculture. I appreciate JavaScript
and have built a lot of my career on it, but there are so many other programming
languages, paradigms, and communities that could bring their own richness into the
browser. I know you’ll find your own ways to innovate with the software you create
and for the users who benefit. I wish you all the best with your Blazor projects and
am confident you’ll find inspiration in these pages.

— Steve Sanderson
Software Engineer/Architect at Microsoft,

original Blazor creator
Bristol, UK

August 2022

viii | Foreword

1 “Blazor: Build Client Web Apps with C#: .NET,” Microsoft, https://oreil.ly/iIaWE.

Preface

Welcome to Learning Blazor. You’re probably here because you’ve heard some cool
things about Blazor and you want to try it out. So, what is it? Blazor is an open source
web framework for building interactive client-side web UI components using C#
(pronounced “see sharp”), HTML, and cascading style sheets (CSS).1 As a feature of
ASP.NET Core, Blazor extends the .NET developer platform with tools and libraries
for building web apps.

WebAssembly enables numerous non-JavaScript-based programming languages to
run on the browser. Blazor takes full advantage of WebAssembly and allows C#
developers to build UI components and client-side experiences with .NET. Blazor is
a single-page application (SPA) framework, similar to Angular, React, VueJS, and
Svelte, for example, but it’s based on C# instead of JavaScript.

Okay, it’s a web framework, but what makes it different from any other client-side
framework for building web UI?

Why Blazor?
Blazor is a game-changer for .NET developers and web developers alike! In this book,
you’ll learn how you can use the Blazor WebAssembly hosting model to create com‐
pelling real-time web experiences. There are seemingly countless reasons to choose
Blazor as your next web app development framework. Let’s start with what it does for
web development.

Back in the early ’90s, surfing the web was like reading a series of linked text docu‐
ments—basic HTML. It was hardly an immersive or cohesive experience. When CSS
and JavaScript came onto the scene, the ability to dynamically respond to user inter‐
actions added a lot more flair to the web experience. Though the web pages started

ix

https://oreil.ly/iIaWE

to look more interesting, they were also very slow to load, and people expected a
sluggish user experience, with visible page rendering/buffering. It was completely
acceptable to watch images render in segments as the underlying image data was
buffered over HTTP to the browser at dial-up connection speeds. This patience didn’t
last. It’s human nature to want things right now, am I right? If you’re sitting on a
browser for more than a few seconds, you start to feel a bit uneasy. As web content
became more complex, development frameworks appeared to tame the complexity.

Among such disruptive frameworks is Blazor with WebAssembly. With Blazor, you
can share C# code on both client and server scenarios, all while leveraging tooling
with the Visual Studio family of products, the robust .NET CLI, and other popu‐
lar .NET integrated development environments (IDEs). The .NET ecosystem is thriv‐
ing, adoption is soaring, and the appeal of Long Term Support (LTS) continues to be
a driving factor for enterprise development. When compared to the LTS of other SPA
frameworks, such as Angular and React, .NET stands out as the clear winner. This is
because the support policy that .NET extends is three years from each LTS version. It’s
very beneficial to stay current with each release. For more information, see the .NET
support policy.

Just like any other web app, Blazor web apps can be created as progressive web apps
(PWAs) to support offline experiences. They can also be hosted inside native desktop
applications and installed on the user’s device. Your Blazor WebAssembly apps can
define native dependencies, such as that from C and C++. Anything compiled with
Emscripten can be used in Blazor. There aren’t many trade-offs to be made, in
my opinion; the web development platform is in high demand and enjoyable to
program for.

When WebAssembly was introduced, it initially received only moderate developer
community attention and anticipation. In 2017, WebAssembly was openly standard‐
ized, which allowed developers to explore new possibilities for interactivity and func‐
tionality beyond JavaScript alone. This is important to web developers, as they could
more easily compete with the lucrative App Store development platform. JavaScript
continues to evolve, adding features beyond the ECMAScript standard. With .NET’s
creation of Blazor, C# became a true competitor to JavaScript.

As a developer with more than a decade of real-world web app development experi‐
ence, I can attest that I have used .NET for enterprise development of production
applications time and time again. The API surface area of .NET alone is massive
and has been used on billions of computer systems around the world. I’ve built a
lot of web apps through the years using various technologies including ASP.NET
WebForms, AngularJS, Angular, VueJS, Svelte, yes, and even React, then ASP.NET
Core Model View Controller, Razor Pages, and Blazor. Blazor melds together the
strength of an established ecosystem with the flexibility and poise of the web, and it
has a lot to offer to both .NET and web developers.

x | Preface

https://oreil.ly/sQE70
https://oreil.ly/sQE70
https://emscripten.org

Who Should Read This Book
This book is for .NET developers and web developers with a basic understanding of
HTML, CSS, Document Object Model, and JavaScript, as well as some experience
developing applications in .NET. This book is not for people who are complete
beginners to programming. For instance, when I told my mom that I was writing a
book, she asked what it was about and if she’d enjoy reading it. I said, “No.” She’s
neither a .NET developer nor a web developer, so I don’t think she’d find much value
in this book. If you’re a .NET developer or web developer, however, you’re in for a
treat.

For .NET Developers
If you’re a .NET developer who is curious about web app development, this book
will detail how you can harness your existing .NET skills and apply them to Blazor
development. The web app platform is a major opportunity for .NET developers. All
the popular JavaScript SPA frameworks, such as Angular, React, VueJS, and Svelte,
have a true rival in Blazor. Blazor app development should be familiar to you as
Blazor is based on .NET and C#. You can share libraries between client and server,
making development truly enjoyable.

For Web Developers
If you’re a web developer who has worked with .NET before, this book extends two
sets of learned programming skills. All of your .NET experience carries over, as does
your knowledge of web fundamentals. If you’re a SPA developer, this book will open
your eyes to a better set of tooling than you’re accustomed to. We also go over many
new C# features. If you’re unfamiliar with C#, this book will provide an idiomatic
view of C# and a strongly opinionated experience.

If you’re asking yourself, “What does idiomatic C# mean?,” C#,
like all programming languages, has a set of programming idioms.
Programming idioms are a way of writing smarter and better code
to get something done. Idiomatic C# is a set of idioms that are used
to make your code more readable and maintainable.

Your JavaScript and developer experience of client-side routing and a deep under‐
standing of HTTP, microservice architecture, dependency injection, and component-
based application mindset—all these things are directly applicable to Blazor
development. Application development shouldn’t be so difficult, and I truly believe
that Blazor makes it easier. With feature-rich data binding, strongly typed templat‐
ing, component hierarchy eventing, logging, localization, authentication, support for

Preface | xi

PWA, and hosting, you have all the building blocks to orchestrate compelling web
experiences.

Why I Wrote This Book
When someone asks me, “Why did you want to write a book?” I pause, feigning deep
thought, before replying, “O’Reilly asked me to.” Simple as that. But in all seriousness,
when I got a friendly email from an O’Reilly acquisitions editor to see if I was
interested in writing a book about Blazor, I gave it a lot of thought. First, it was pretty
cool to be asked! But I also knew taking on this kind of project would mean putting
a few things on hold. I’d have to take a hiatus from speaking events, which have been
a major part of my life over the past several years. Yet I thrive on helping others,
so writing a book would be helping people differently. Writing a book would also
mean taking time away from my young family. My family and my wife specifically
have been extremely warm-hearted and supportive. She believes in my ability to help
others and shares my passion. In the end, I decided, “Yes! I want to write a book!”

To me, helping the developer community also helps strengthen my understanding
of a specific technology. I love Blazor! Blazor is (and has been) a major investment
for the .NET and ASP.NET Microsoft development teams. They continue to drive
innovation, extending the reach of C# and the .NET ecosystem as a whole. This book
is a developer must-have, and it’s my way of giving back to the developer community
I’ve grown to love. I have poured myself into this book, and I know my enthusiasm
for Blazor shines through.

How to Use This Book
This isn’t your typical “introduction to X” kind of book. It’s a technical book that’ll
introduce you to using Blazor to build SPAs with WebAssembly and C#. There are
plenty of books out there that use the step-by-step approach—this book is not one of
them.

As you read this book, I want you to have an experience that is similar to the one
you’d have when joining a new team. You’ll experience a bit of onboarding, you’ll
be brought up to speed on an existing application, and you’ll learn various domain
bits along the way. The “Learning Blazor” sample app is a decent-sized solution with
well over a dozen projects of varying sizes. Each project contains or contributes to
specific functionality in the Learning Blazor app. We will examine these projects as
examples of how to do things in Blazor. As I take you through the inner workings of
the app, you’ll learn Blazor app development along the way. By the end, you’ll gain
experience with what goes into Blazor app development and understand why certain
development decisions were made, and you’ll have working examples of how to get
things done. You’ll close the book and have inspiration for your apps.

xii | Preface

All of the examples in this book are shown using the Learning Blazor application (or
model app). The source code from the model app, along with this book, makes for a
great learning resource and future point of reference. The source code repository is
available on GitHub and shared in “The Code Must Live On” on page 17.

Roadmap and Goals of This Book
This book is structured as follows:

• Chapter 1, “Blazing into Blazor”, introduces the core concepts and fundamentals•
of Blazor for web app development as a platform. It also introduces the example
app for this book and discusses its architecture.

• Chapter 2, “Executing the App”, dives into how the execution of the app func‐•
tions starting from the first client request to the static website’s URL. You’ll learn
how the HTML renders, how the subsequent requests for additional resources
are called, and how Blazor bootstraps itself.

• Chapter 3, “Componentizing”, goes into how the user is represented within the•
app. You’ll learn how to use third-party authentication providers to verify a user’s
identity. You’ll learn about customization of the authentication state UX and
about various data-binding approaches with Razor control structures.

• Chapter 4, “Customizing the User Login Experience”, details how the client serv‐•
ices are registered for dependency injection. You’ll learn about componentization
and how to use the RenderFragment approach for customizing components.
You’ll also learn how to write and use parameterized client-native speech synthe‐
sis that is fully functional and configurable in Blazor WebAssembly.

• Chapter 5, “Localizing the App”, demonstrates how you can use a free AI-based•
automated continuous delivery pipeline to support localization. You’ll learn how
to use the framework-provided IStringLocalizer<T> type and corresponding
services.

• Chapter 6, “Exemplifying Real-Time Web Functionality”, introduces real-time•
web functionality and shows a notification system, live tweet stream page,
and alert capabilities. Additionally, you’ll learn how to build a chat app using
ASP.NET Core SignalR.

• Chapter 7, “Using Source Generators”, creates a case for source generators to•
improve the Blazor JavaScript interoperability (interop) experience. You’ll learn
why C# source generators are so useful in app development and how they’ll save
you loads of time.

• Chapter 8, “Accepting Form Input with Validation”, explores how forms work.•
We’ll go through an advanced <form> of input validation. We’ll also look at how
to incorporate native speech recognition into the form to give users another

Preface | xiii

input option. You’ll learn how to use EditContext and form-model binding.
Chapter 8 also demonstrates a pattern for custom state validation that receives
live updates using Reactive Extensions for .NET.

• Chapter 9, “Testing All the Things”, teaches you how to write unit tests, com‐•
ponent tests, and even end-to-end tests to make sure your app works. These
tests can be automated to run each time that the app is pushed to the GitHub
repository using GitHub Actions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/learning-blazor-code.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

xiv | Preface

https://oreil.ly/learning-blazor-code
mailto:bookquestions@oreilly.com

This book is here to help you get your job done. In general, if an example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate but generally do not require attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Blazor by
David Pine (O’Reilly). Copyright 2023 David Pine, 978-1-098-11324-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learning-blazor.

Preface | xv

mailto:permissions@oreilly.com
http://oreilly.com
https://oreilly.com
https://oreil.ly/learning-blazor

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia

Acknowledgments
I once traveled to Serbia as part of the ITkonekt developer conference. I shared
a travel van with three amazing individuals. One was Jon Galloway, who at the
time was the executive director of the .NET Foundation. The second was Jonathan
LeBlanc, who is the only person I know who has won an Emmy Award for technology
(and who is now a fellow O’Reilly author). The third individual was Håkon Wium
Lie, who is known for being the creator of CSS and is the former CTO of Opera. It
was a great opportunity to learn from all of them.

Anyway, during the trip, it came to light that, of the four of us in the van, I was the
only one who hadn’t written a book. They immediately encouraged me to rectify that.
They told me to share my knowledge with the world and write a book. I was touched
to hear that my esteemed friends and colleagues believed in me. I didn’t write a book
right away, but I did give it a lot of thought and waited until the time was right.
Which is now! I’d like to thank Jon, Jonathan, and Håkon for believing in me and
being inspirations to the developer community.

Please allow me to thank a few contributors to some of the source code that’s
referenced in this book. Thank you, Ben Felda, for contributing SVGs and styling
updates to the model app’s landing page tile components. Thank you, Max Schmitt,
for helping me simplify my usage of Playwright testing framework from the model
app’s build validation workflow. Thank you to Billy Mumby for your extensive work
on the model app’s task-list feature by supporting the underlying data store. The
work you’ve done to strengthen the Azure Cosmos DB Repository .NET SDK that
we maintain is a huge asset to the developer community. Thank you to Weihan Li
for his contributions to the model app’s consumption of the Blazor source generator,
namely Blazorators. Thank you, Vsevolod Šliachtenko, for your collaboration and
work with me on the Azure resource translator GitHub Action. You helped to imple‐
ment request batching beautifully. Thank you, GitHub bot, for automating more than
73,000 lines of code as of July 2022 to the Learning Blazor project.

I’d like to thank my mentor and good friend David Fowler. David has been mentoring
me for a long time, and I hold all of his valuable lessons near and dear to my heart.
David contributed code to my “Have I Been Pwned” .NET HTTP Client open source

xvi | Preface

mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia
https://oreil.ly/1rmND
https://oreil.ly/uBU3o
https://oreil.ly/1pGdr

project to simplify the Minimal API example. Our exchanges are often the highlight
of my week; I share code, experiences, career challenges, and thoughts with him, and
he reflects his brightness. He’s an inspiration to me and so many others, and I’m
immensely grateful to learn from him.

Thank you to the O’Reilly team for their support and encouragement. I want to
formally thank all of the reviewers of this book: Rita Fernando, Carol Tumey, Erik
Hopf, Gerald Versluis, John Kennedy, Chad Olson, and Egil Hansen. Without their
tirelessness and thorough reviews—from editorial reviews hanging on every word to
in-depth technical reviews ensuring that every line of code is as simple and elegant
as possible—this book would not have become as profound and helpful. The quality
is backed by decades of professional real-world experience, and I’m thrilled by the
result.

I would like to thank Steve Sanderson for creating Blazor. I thoroughly enjoy writing
apps using this technology. I would also like to thank the numerous contributors of
open source and .NET communities around the world. You’re inspiring—thank you!

Finally, I want to thank my family. Without the support of my amazing wife, Jennifer,
none of this would have been possible. She encourages me to be the best possible
version of myself. She’s believed in me far longer than I’ve believed in myself. I want
to thank my three sons, Lyric, Londyn, and Lennyx. They’re a constant reminder of
the future and the good we find in the world. Each child uniquely carries a little
piece of inquisitive nature, curiosity, and joy. Without their spark and support, you
wouldn’t be reading this right now. Thank you!

Preface | xvii

CHAPTER 1

Blazing into Blazor

Node.js reshaped the world of modern web app development. Its success is attributed
in part to the popularity of JavaScript, of course. JavaScript now runs on both the
client and the server alike, thanks to Node. This is why Blazor will be so successful—
C# is now capable of running in the browser with WebAssembly. To .NET developers,
there is a huge potential because there are a great many C# server apps in existence
today. There are many opportunities for .NET developers to create amazing user
experiences with Blazor.

For the first time, .NET developers can use their existing C# skills to build all sorts of
apps on the web. This blurs the lines between backend and frontend developers and
expands app development for the web. With modern web app development, you want
your apps to be responsive on both desktop and mobile browsers. Modern web apps
are much more sophisticated and rich in content than their predecessors and boast
real-time web functionality, progressive web app (PWA) capabilities, and beautifully
orchestrated user interactions.

In this chapter, you’ll learn about the origins of .NET web app development and
the birth of Blazor. You’ll explore the variations of single-page application (SPA)
frameworks and see how .NET solidified its place in the web ecosystem. I’ll answer
many of the questions you may have about why Blazor is a viable option and discuss
its hosting models. Finally, you’ll get your first look at the Learning Blazor sample
application. This sample application will be used throughout the book, with each
chapter demonstrating various features of Blazor and using the app to follow along.

The Origin of Blazor
In 1996, Active Server Pages (ASP) from Microsoft offered the first server-side
scripting language and engine for dynamic web pages. As .NET Framework evolved,

1

ASP.NET was born, and with it emerged ASP.NET Web Forms (WebForms). Web‐
Forms was (and still is) used by many who enjoy what .NET was capable of.

When ASP.NET Model View Controller (MVC) was first released in 2006, it made
WebForms look sluggish in comparison. MVC brought ASP.NET developers closer
to less-abstracted web development. By having a closer alignment to web standards,
MVC introduced the model-view-controller pattern of ASP.NET, which helped to
address the issue of managing ASP.NET post-back state. At the time, this was a sore
point in the developer community. Developers didn’t like the fact that WebForms car‐
ried the additional state for all the controls on the page along with <form> post data.
WebForms fabricated statefulness with View State and other state mechanisms that
contradicted the nature of HTTP. MVC focused on testability, emphasizing to devel‐
opers the importance of sustainability. This was a paradigm shift from WebForms.

In 2010, the Razor view engine was introduced to serve as one of several view engine
options to use with ASP.NET MVC. Razor is a markup syntax that melds HTML and
C# and is used for templating. As a side-product of MVC, ASP.NET Web API grew
in popularity, and developers embraced the power of .NET. Web API started being
accepted as the standard for building .NET-based HTTP services. All the while, the
Razor view engine was evolving, strengthening, and maturing.

Eventually, with the Razor view engine using MVC as a basis, Razor Pages took to
the stage. Innovations from ASP.NET Core made a lot of this possible. The team’s
eager push for performance as a feature is evident with the TechEmpower benchmark
results, where ASP.NET Core continues to climb ahead. Kestrel is the cross-platform
web server that’s included and enabled by default in ASP.NET Core project templates.
It’s one of the fastest web servers in existence as of 2022—capable of serving more
than 4 million requests per second.

ASP.NET Core offers first-class citizenship to all of the fundamentals you’d expect
in modern development, such as (but not limited to) dependency injection, strongly
typed configurations, feature-rich logging, localization, authentication, authorization,
and hosting. Razor Pages lean more toward true components and build on Web API
infrastructure.

After Razor Pages came Blazor, a name inspired by combining “browser” and
“Razor.” Blazor (clever name, isn’t it?) is the first of its kind for .NET, a SPA frame‐
work. Blazor takes advantage of WebAssembly (Wasm), which is a binary instruction
format for a stack-based virtual machine. WebAssembly is designed as a portable
compilation target for programming languages, enabling deployment on the web for
client and server applications. WebAssembly allows .NET web apps to truly compete
with JavaScript-based SPA frameworks. It’s C# running in the client browser with
WebAssembly and the Mono .NET runtime.

2 | Chapter 1: Blazing into Blazor

https://oreil.ly/Ff8lV
https://oreil.ly/Ff8lV
https://webassembly.org

According to Steve Sanderson, he created Blazor because he was inspired to get .NET
running on WebAssembly. He had a breakthrough when he discovered Dot Net
Anywhere (DNA), an alternative .NET runtime that could easily be compiled to Web‐
Assembly with Emscripten, a complete compiler toolchain to WebAssembly, with a
special focus on speed, size, and the web platform.

This was the path that led to the creation of one of the first working prototypes
of .NET running in the browser without a plug-in. After Steve Sanderson delivered
an amazing demonstration of this functioning .NET app in the browser, other Micro‐
soft stakeholders started supporting the idea. This took .NET a step further as an
ecosystem and a step closer to what we know as Blazor today.

Now that we’ve discussed how Blazor came to be, let’s talk about how it’s able to bring
apps to life and the different ways they can be hosted.

Blazor Hosting
There are three primary Blazor hosting models: Blazor Server, Blazor WebAssembly,
and Blazor Hybrid. While this book covers Blazor WebAssembly, Blazor Server and
Blazor Hybrid are valid alternative approaches in their own right.

Blazor Server
With Blazor Server, when a client browser makes the initial request to the web server,
the server executes .NET code to generate an HTML response dynamically. HTML is
returned and subsequent requests are made to fetch CSS and JavaScript as specified
in the HTML document. Once the scripts are loaded and running, client-side routing
and other UI updates are made possible with an ASP.NET Core SignalR connection.
ASP.NET Core SignalR offers bidirectional communication between client and server,
sending messages in real time. This technology is used to communicate changes to
the Document Object Model (DOM) on the client browser—without a page refresh.

There are advantages to using Blazor Server as a hosting model over Blazor
WebAssembly:

• The download size is smaller than Blazor WebAssembly because the app is•
rendered on the server.

• The component code isn’t served to clients, only the resulting HTML and some•
JavaScript to talk to the server.

• Server capabilities are present with the Blazor Server hosting model because the•
app technically runs on the server.

For additional information on Blazor Server, see Microsoft’s “ASP.NET Core Blazor
Hosting Models” documentation.

Blazor Hosting | 3

https://emscripten.org
https://oreil.ly/rwMaU
https://oreil.ly/rwMaU

Figure 1-1 shows the server and the client. The server is where Blazor code runs, and
it is comprised of Razor components running on .NET. The client is responsible for
rendering HTML. The client JavaScript communicates user interactions to the server,
which then performs logic before sending a list of HTML changes (deltas) back to the
client to update its view.

Figure 1-1. Blazor Server hosting model

Blazor WebAssembly
With Blazor WebAssembly, when a client browser makes the initial request to the
web server, the server returns a static HTML view of what the app would display to
the user if already running; this gives users a faster time-to-first render and allows
search engines to crawl your app’s content. As the user views the statically rendered
content, the resources needed to run the app within the client are downloaded in the
background. As part of a Blazor WebAssembly app’s HTML, there will be a <link>
element that requests the blazor.webassembly.js file. This file executes and starts
loading WebAssembly, which acts as a bootstrap that requests .NET binaries from
the server. Once your app is downloaded locally and running inside the browser,
changes to the DOM, such as updating data values on the page, occur as new data is
retrieved from API calls. This is covered in detail in “App Startup and Bootstrapping”
on page 25.

Being mindful of the hosting model is important. With Blazor
WebAssembly hosting, all of your C# code is executed on the client.
This means that you should avoid using any code that requires
server-side functionality, and you should avoid sensitive data such
as passwords, API keys, or other confidential information.

When using the Blazor WebAssembly hosting model, you can choose to create a
Blazor ASP.NET Core-hosted application or a standalone application that can be
published as just a set of static files (obviously, this will not support server-side
pre-rendering for search engines and improved UX). With the ASP.NET Core hosted
solution, ASP.NET Core is responsible for serving the app as well as providing a Web
API in a client/server architecture. The application for this book uses the standalone
model and is deployed to Azure Static Web Apps. In other words, the application is

4 | Chapter 1: Blazing into Blazor

served as a set of static files. The data used to drive the app is available as several
Web API endpoints that are deployed either as containers or as simple fault-tolerant
pass-thru APIs with monitoring. We’re also using Azure Functions as a serverless
architecture for local, current, and up-to-date weather data.

Figure 1-2 shows only the client. The client is responsible for everything in this
scenario, and the site can be served statically.

Figure 1-2. Blazor WebAssembly hosting model

With the standalone approach, the ability to leverage serverless cloud functionality
with Azure Functions is helpful. Microservice capabilities such as this work great
together with ASP.NET Core Web APIs and Blazor WebAssembly standalone scenar‐
ios and together serve as a desirable target for deployment with Azure Static Web
Apps. Static web servers deliver static files, which is less computationally expensive
than computing a request that then has to dynamically render HTML to then return
as a response.

While this book is focused on developing a Blazor WebAssembly
application that is hosted as static files, it’s important to note that
this is not the only option. I prefer to develop Blazor WebAssembly
applications that are statically hosted. For additional information
on the hosting model, see Microsoft’s “ASP.NET Core Blazor Host‐
ing Models” documentation.

With the Blazor WebAssembly hosting model, you can write C# that runs inside.
With WebAssembly, a “binary instruction format” means that we’re talking about
byte code. WebAssembly sits atop a “stack-based virtual machine.” Instructions are
added (pushed) into the stack, while results are removed (popped) from the stack.
WebAssembly is a “portable compilation target.” This means it’s possible to take C,
C++, Rust, C#, and other nontraditional web programming languages and target
WebAssembly for their compilation. This results in WebAssembly binaries, which are
web-runnable based on open standards but from programming languages other than
JavaScript.

Blazor Hosting | 5

https://oreil.ly/xuL8J
https://oreil.ly/xuL8J

1 “Stack Overflow Developer Survey 2021,” Stack Overflow, https://oreil.ly/bngvt.

Blazor Hybrid
Blazor Hybrid is beyond the scope of this book. Its purpose is geared toward creating
native client experiences for desktop and mobile devices, and it works well with .NET
Multiplatform App UI (MAUI). For more information about Blazor Hybrid, see
Microsoft’s “ASP.NET Core Blazor Hybrid” documentation.

Single-Page Applications, Redefined
Blazor is the only .NET-based SPA framework in existence. The fact that we can
use .NET to write SPAs cannot be overstated. There are many popular JavaScript SPA
frameworks including (but not limited to) the following:

• Angular•
• React•
• VueJS•
• Svelte•

These are all based on JavaScript, whereas Blazor isn’t. The list is nonexhaustive—
there are many more JavaScript-based SPA frameworks and even more non-SPA
JavaScript frameworks, for that matter! JavaScript has ruled the browser as the exclu‐
sive programming language of the web for well over 20 years. It’s a very flexible
programming language and is among the most popular in the world. In its infancy,
the language was prototyped in a few weeks by Brendan Eich—it’s amazing how far
it’s come since then.

Stack Overflow manages a professional developer annual survey, and in 2021, over
58,000 professional developers and more than 83,000 total developers voted Java‐
Script as the most commonly used programming language. That marked the ninth
year in a row that JavaScript was the most commonly used programming language.1

The close second was HTML/CSS. If you combine these totals, the web app platform
has a solid future.

One perceived disadvantage of JavaScript is that without definitive types, developers
have to either code defensively or face the potential consequences of runtime errors.
One way to help address this is by using TypeScript.

TypeScript was created by Anders Hejlsberg (who was also the lead architect of C#,
chief engineer of Turbo Pascal, and chief architect of Delphi—he’s a programming
language genius!). TypeScript provides a type system that enables language services to
reason about the intent of your code.

6 | Chapter 1: Blazing into Blazor

https://oreil.ly/bngvt
https://oreil.ly/pubzs
https://angular.io
https://reactjs.org
https://vuejs.org
https://svelte.dev

With TypeScript, you write generic type-safe code using all of the latest ECMAScript
standards and prototyped features. The best part is that your code is backward
compatible to ES3. TypeScript is a superset of JavaScript, meaning that any valid
JavaScript is also valid TypeScript. TypeScript provides static typing (type system)
and a powerful language service that provides features to your favorite IDEs. This
makes programming with JavaScript less error-prone, which cannot be understated.
TypeScript is more like a developer tool than it is a programming language, but it
has incredible language features. When it compiles, all your types go away, and you’re
left with just JavaScript. Try to think of TypeScript as a way to make debugging and
refactoring substantially easier and more reliable. With TypeScript, you have one of
the most advanced flow analysis tools in the world, and far more advanced language
features than JavaScript alone. All web developers know that Angular rivals React
in the popularity of JavaScript-based SPAs—this is no surprise. I believe a lot of
Angular’s competitive edge was directly correlated to adopting TypeScript far sooner
than React did.

Blazor, unlike JavaScript-based SPAs, is built atop .NET. While TypeScript might help
developers to be more productive with JavaScript, one of the primary reasons that
Blazor has a bright future is its interoperability with C#. C# has long had most of
the benefits that TypeScript offered to JavaScript development and more. Not only
does C# also have an excellent type system, but it is even better at catching errors at
compile time. TypeScript’s static type system is “duck typed” (if it looks like a duck
and sounds like a duck, then treat it like a duck), whereas C# has a strict type system
that ensures the object you are passing is an instance of a duck type. C# has always
prioritized the developer experience with flow analysis, statement completion, a
feature-full ecosystem, and reliable refactoring. C# is a modern, object-oriented first,
and type-safe programming language that is constantly evolving and maturing, fur‐
ther expanding its capabilities. It is open source, and new features are often inspired
and influenced, and sometimes even developed, by the developer community.

All that being said, Blazor provides interop with JavaScript as well. You can call
JavaScript from your Blazor code, and you can call .NET code from your JavaScript
code. This is a useful feature to leverage existing JavaScript utilitarian functionality
and JavaScript APIs.

Why Adopt Blazor
There are interesting new scenarios specific to WebAssembly that were not realisti‐
cally achievable with JavaScript alone. It’s easy to imagine applications being delivered
over the web to your browser, powered by WebAssembly for more elaborate and
resource-intensive use cases. If you haven’t heard of AutoCAD before, it’s computer-
aided design software that architects, engineers, and construction professionals rely
on to create 2D and 3D drawings. It’s a desktop application, but imagine being able

Why Adopt Blazor | 7

to run a program like this natively in a web browser. Imagine audio and video
editing, running or playing robust and resource-taxing games all in the browser.
WebAssembly does allow us to reimagine the web a bit. The web app platform holisti‐
cally might be the next delivery mechanism for a generation of software development.
The web app development platform continues to evolve, grow, and mature. Internet-
based data processing and ingestion systems thrive because of their connectivity to
the world. The web app development platform serves as the median that bridges a
developer’s imagination and a user’s desire.

Developers can continue to extend their C# and Razor skills into SPA development
rather than having to learn an additional language and rendering framework. C#
developers who previously weren’t inclined to write SPA apps are now switching
from MVC to SPA simply because “it’s just more C#.” Additionally, the code-sharing
potential is great. Rather than ensuring your C# API contracts on the server are
manually kept in sync with your TypeScript definitions, you can simply use the same
contracts file, along with all the DataAnnotation validators too.

I believe that in the coming years, we will start seeing more and more WebAssembly-
powered applications. Blazor WebAssembly will be .NET’s solution of choice.

.NET’s Potential in the Browser
At my first developer job out of college, I was the most junior developer on a team
of developer leads or architects. I vividly recall being seated in a cube farm alone;
neighboring cubes were empty. But all the surrounding offices were filled with the
rest of the team.

I was working in the automotive industry, and we were implementing a low-level
communication standard known as the onboard diagnostics (OBD) protocols. We
were doing so with the .NET SerialPort class. We were writing applications that
performed state testing for vehicle emissions. In the US, most states mandate that
vehicles of a certain age have annual emissions tests to ensure their ability to be
registered. The idea is rather simple: evaluate the vehicle’s various conditions. For
example, a vehicle could have hardware triggering state changes, which propagate
through the firmware, each wire transmitting information as it happens. The OBD
system sits in the onboard vehicle computers, which can relay this information to
interested parties. Your “check engine” light, for example, is a diagnostic code from
the OBD system.

The apps were primarily built as Windows Forms (WinForms) applications, and
there were a few web service apps too. But this meant the app was limited to the .NET
Framework and Windows at the time—in other words, it wasn’t cross-platform. The
application had to communicate with various web services to persist the data and pull
lookup data points. At the time, it would have been unimaginable to write something
like this and deploy it as a web app; it had to be WinForms on Windows.

8 | Chapter 1: Blazing into Blazor

Now, however, it is very easy to imagine this application being rewritten as a web
app with Blazor WebAssembly. The Mono .NET runtime is what makes writing
cross-platform .NET apps possible.

Try to imagine how it might be straightforward to implement the same .NET Serial
Port object that we were using in WinForms in Blazor WebAssembly instead. The
corresponding implementation could hypothetically rely on WebAssembly interop
with the native JavaScript Web Serial APIs. This kind of cross-platform functionality
already exists with other implementations, such as the .NET HttpClient in Blazor
WebAssembly. With Blazor WebAssembly, our compilation target is WebAssembly,
and the Mono runtime’s implementation is the fetch Web API. You see, .NET has the
entire web as its playground now.

.NET Is Here to Stay
WebAssembly is supported in all major browsers and covers nearly 95% of all users
according to the “Can I Use WebAssembly?” web page. It’s the future of the web, and
you’ll continue to see developers building applications using this technology.

.NET isn’t going anywhere either. Microsoft continues to move forward at staggering
speeds, with release cadences that are predictable and profound. The web developer
community is extremely strong, and the software development industry as a whole
recognizes ASP.NET Core as one of the best options for modern and enterprise-
friendly web app dev platforms. JavaScript is still a necessity, but it’s deemphasized
from your perspective because WebAssembly relies on it today and they play very
nicely together. The WebAssembly website states, “It is expected that JavaScript and
WebAssembly will be used together in several configurations.”

Familiarity
If you’re a C# developer, great! If you’re a JavaScript developer, awesome! Bring these
existing skills to the table, and Blazor will feel very familiar with both sets of lenses.
This way, you can keep using your HTML and CSS skills and your favorite CSS libra‐
ries, and you’re free to work smoothly with existing JavaScript packages. JavaScript
development is deemphasized, however, as you’ll code in C#. C# is from Microsoft
and is heavily influenced by the .NET developer community. In my opinion, C# is
one of the best programming languages.

If you’re coming from a web development background, you’re more than likely used
to client-side routing, event handling, HTML templating of some sort, and compo‐
nent authoring. Everything that you’ve grown to love about web development is still
at the forefront of Blazor development. Blazor development is easy and intuitive.
Additionally, Blazor provides various isolation models for both JavaScript and CSS.
You can scope JavaScript and CSS to individual components. You can continue to

Why Adopt Blazor | 9

https://oreil.ly/ixdKk
https://oreil.ly/EKjC7

use your favorite CSS preprocessor too. You’re entirely free to pick whichever CSS
framework you prefer.

Safe and Secure
Long before WebAssembly, there was another web-based technology that I’d be
remiss not to mention. Microsoft Silverlight was a plug-in powered by the .NET
Framework. Silverlight was an app framework designed for writing and running rich
web applications. Silverlight relied on the Netscape Plugin Application Programming
Interface (NPAPI), which has long since been deprecated. The plug-in architecture
proved to be a security concern, and all of the major browsers started phasing
out support of NPAPI. This led to the demise of Silverlight, but rest assured: Web‐
Assembly is not a plug-in-based architecture.

WebAssembly is every bit as secure as JavaScript. WebAssembly
plays within the same security sandbox as all browser-based Java‐
Script execution environments. Because of this, WebAssembly’s
security context is identical to that of JavaScript.

Code Reuse
SPA developers have been fighting an uphill battle for years. These developers con‐
sume web API endpoints that define a payload in a certain shape. The consuming
client-side code (the SPA app) has to model the same shape; however, this is error-
prone as the API can change the shape of the response whenever it needs to. The
client would have to know when these changes are made and then adapt, and this
is tedious! Blazor can alleviate that concern by sharing models from .NET Web APIs
with the Blazor client app. I cannot stress the importance of this enough. Sharing the
models from a class library with both the server and the client is like having your cake
and eating it too.

As a developer who has played on both sides of the development experience, from
building APIs to consuming them on client apps, I think the act of synchronizing
model definitions carries with it a great sense of tedium. I refer to this as “synchroni‐
zation fatigue.” Synchronization fatigue wears hard on developers, who grow frustra‐
ted with manually mapping server and client models. This is especially true when you
have to map type systems from different languages—that’s never fun. This problem
existed in backend development too, reading data from a storage medium, such as
the file system or database. Mapping the shape of something stored in a database to
match a .NET object is a solved problem; object-relational mappers (ORMs) do this
for us.

For years and years, I leaned on tooling to help catch common errors, where the
server would change the shape of an API endpoint’s data structure and the client app

10 | Chapter 1: Blazing into Blazor

would break. Sure, you could try to use API versioning—but if we’re honest with
each other, that has its own set of complexities. Tooling simply wasn’t enough, and it
was very difficult to prevent synchronization fatigue. Occasionally, wild ideas would
emerge to combat these concerns, but you have to ask yourself, “Is there a better
way?” The answer is “Yes, with Blazor, there is!”

Entire .NET libraries can be shared and consumed in both server-side and client-side
scenarios. Making use of existing logic, functionality, and capabilities allows devel‐
opers to focus on innovating more because they’re not required to reinvent the
wheel. Also, developers don’t have to waste time maintaining two different languages,
manually mapping models delivered over from a server to a client browser. You can
make use of common extension methods, models, and utilitarian functions that can
all be easily encapsulated, tested, and shared. This alone actually has an implicit
and perhaps less obvious quality. You see, a single team can write the client, the
server, and the abstraction together. This allows for rapid innovation in your app
development process because there will be so much common code that can be reused
and shared. Think of this as tons of apps being written all around the world by
multiple teams, where at least one team is relying on another team. It’s a common
development problem domain, where one team takes a dependency of the output
from another. But it’s not a necessity with Blazor, because it’s all C#!

Tooling
As developers, we have many options when it comes to tooling. Choosing the right
tool for the job is just as important as the job itself. You wouldn’t use a screwdriver
to hammer in a nail, would you? The development team’s productivity is always a
major concern for application development. If your team fumbles about or struggles
to get common programming tasks done, the entire project can and will eventually
fail. With Blazor development, you can use proven developer tooling such as the
following:

• Visual Studio•
• Visual Studio for Mac•
• Visual Studio Code•

Mileage may vary based on your OS. On Windows, Visual Studio is great. On
macOS, it’s probably easier to use Visual Studio Code. JetBrains’ Rider is another
amazing .NET development environment. The point is that as a developer, you have
plenty of really good options. Whichever IDE you decide on, it needs to work
well with the .NET ecosystem. Modern IDEs power developers to be their most
productive. C# is powered by Roslyn (the .NET Compiler Platform), and while it’s
opaque to you, the developer, we’re spoiled with features such as these:

Why Adopt Blazor | 11

Statement completion (IntelliSense)
As you type, the IDE shows pick lists of all the applicable and contextual
members, providing semantic guidelines and more rapid code discoverability.
Developer documentation enabled by triple-slash comments further advances
code comprehension and readability.

AI-assisted IntelliSense (AI, IntelliCode)
As you type, the IDE offers suggestions to complete your code based on model-
driven predictions, which are learned from all 100+ star open source code reposi‐
tories on GitHub.

GitHub Copilot (AI pair programmer)
As you type, the IDE suggests entire lines or functions, trained by billions of lines
of public code.

Refactoring
Quickly and reliably ensure consuming references downstream are appropriately
updated, from changing method signatures, member names, and types across
projects within a solution to adding C# modernization efforts that enhance
source code execution, performance, readability, and the latest C# features.

Built-in and extensible code analyzers
Detect common pitfalls or missteps in source code, and quickly light up the
developer experience with warnings, suggestions, and even errors. In other
words, write cool code.

Code generators
One code generator example is auto equality implementations with record types;
this technology has allowed for the reimagining of what’s possible.

The Art of Debugging
A good .NET IDE will have a great debugging experience; it’s a requirement for
IDEs that value adoption. The best developers are amazing at debugging. They’re
always debugging, refactoring, testing, tweaking…perfecting. It’s almost an obsession.
Reflecting on this, we’re telling a machine to remember our intentions, and whenever
a user asks something of our apps, it interprets our intentions and appeases the user.
It’s beautiful—we can speak to computers, and they listen. I can’t get my three sons to
do that all the time. Many things make up good developers, but this, I promise, will
set you apart. Secretly, we’re all perfectionists, and debugging is a major part of that.
Features like Hot Reload and Edit and Continue are really useful.

12 | Chapter 1: Blazing into Blazor

You can also utilize the .NET CLI, which is a cross-platform toolchain for develop‐
ing .NET workloads. It exposes many commands, such as new (templating), build,
restore, publish, run, test, pack, and migrate.

Open Source Software
Blazor is entirely developed in the open, as part of the ASP.NET Core GitHub
repository.

Open source software development is the future of software engineering in modern-
day development. The reality is that it’s not really new; it’s just new to .NET as of
March 2014. With the birth of the .NET Foundation, developers collaborate openly
with negotiated open standards and best practices. Innovation is the only path for‐
ward, especially when projects undergo public scrutiny and natural order prevails.

To me, it’s not enough to simply describe .NET as open source. Let me share with you
a bit more perspective about the true value proposition and why this is so important.
I’ve witnessed .NET APIs being developed, from their inception to fruition—the
process is very mature and well established. This applies to Blazor as well because it’s
part of the .NET family of open source projects.

Unlike typical projects, open source projects are developed entirely out in the open
for the public to see. With .NET, it starts with early discussions, and then an idea
emerges. A GitHub issue is used to draft an ASP.NET Core api-suggestion label.
From a suggestion, after it’s been discussed and vetted, it moves into a proposal.
The issue containing the proposal transitions to an ASP.NET Core api-ready-for-
review label. The issue captures everything you’d expect for the proposal: the prob‐
lem statement, use cases, reference syntax, suggested API surface area, example usage,
and even links to the comments from the original discussion and idea.

The potential API usually includes bargaining, reasoning, and negotiation. After
everyone agrees it’s a good proposal, a draft is finalized with a group of people who
participate in the public API design review meeting. The official .NET API design
review meeting follows a weekly schedule, streams live on YouTube, and invites
developer community members to share their thoughts. As part of the review, notes
are captured and GitHub labels applied, and assuming it receives a stamp of approval,
the .NET API in question is codified as a snippet. Finally, it moves to ASP.NET Core
api-approved label.

From there, the issue serves as a point of reference for pull requests that aim to satisfy
the proposal. A developer takes the issue, implements the API, writes unit tests, and
creates a pull request (PR). The PR undergoes review, and when it’s merged, the
API has to be documented, communicated, breaking changes captured and reported,
promoted, shared, analyzed, and so on.

Why Adopt Blazor | 13

https://oreil.ly/4YS3Z
https://oreil.ly/4YS3Z
https://oreil.ly/0zKRz
https://oreil.ly/ajkuM
https://oreil.ly/ajkuM
https://oreil.ly/TYc05
https://oreil.ly/TYc05

All of this is for a single .NET API, and there are tens of thousands of .NET APIs.
You’re in good hands with the strength of all the .NET contributors who are building
the best platforms in modern app dev today.

The software development industry is rather fond of open source software develop‐
ment. To me, being able to see how a feature is architected, designed, and imple‐
mented is a game-changer. The ability to post issues, propose features, carry on open
discussions, maintain Kanban-style projects with automated status updates, collabo‐
rate with the dev team and others, and create pull requests are all capabilities that
make this software community-centric. This ultimately makes for a better product,
without question!

Cold Code and Perpetuity
GitHub values open source very differently than most organizations. GitHub has an
archive program, in which they preserve snapshots of every active public repository
on GitHub. These snapshots will last for 1,000 years in cold storage in the Arctic
World Archive. Located closer to the North Pole than the Arctic Circle, the vault is
in the Svalbard archipelago. I think it’s so cool (both literally and figuratively) to have
code that’s stored there—it gives open source developers a sense of perpetuity and
purpose. I believe that we open source developers are making the world a better place.

Your First Blazor App with the .NET CLI
Enough talk. Let’s jump in and have you make your very first Blazor app using
the .NET CLI. The .NET CLI is cross-platform and works on Windows, Linux, and
macOS. Install the .NET SDK, which includes the .NET CLI and runtime—available
as a free download. Install .NET 6.0 because it’s an LTS version. With the .NET CLI,
you’re able to create many .NET workloads. To create a new Blazor WebAssembly
application, open a terminal and run the following:

dotnet new blazorwasm -o FirstApp

The dotnet new command will have created a new Blazor WebAssembly application
based on the template.

There are many other templates available to you. .NET is free, open
source, and amazing. For additional templates, see Microsoft’s list
of .NET default templates for dotnet new.

It will output the project to a newly created FirstApp directory. You should see
command output similar to the following:

14 | Chapter 1: Blazing into Blazor

https://oreil.ly/zWMCk
https://oreil.ly/zWMCk
https://oreil.ly/Lg1Nk

The template "Blazor WebAssembly App" was created successfully.
This template contains technologies from parties other than Microsoft,
see https://aka.ms/aspnetcore/6.0-third-party-notices for details.

The template application comprises a single C# file, several Razor files, CSS files, and
an index.html. This application has a few pages, basic navigation, data binding, event
handling, and a few other common aspects of typical Blazor application development.
Next, you’ll need to change directories. Use the cd command and pass the directory
name:

cd FirstApp

Build the App
Once you’re in your new application’s directory, the template can be compiled using
the following command:

dotnet build

After the app is compiled (has a successful build), you should see command output
similar to the following:

Microsoft (R) Build Engine version 17.0.0+c9eb9dd64 for .NET
Copyright (C) Microsoft Corporation. All rights reserved.

 Determining projects to restore...
 All projects are up-to-date for restore.
 FirstApp -> ..\FirstApp\bin\Debug\net6.0\FirstApp.dll
 FirstApp (Blazor output) -> ..\FirstApp\bin\Debug\net6.0\wwwroot

Build succeeded.
 0 Warning(s)
 0 Error(s)

Time Elapsed 00:00:04.20

Install Dev-cert
If this is your first time building and running an ASP.NET Core application, you’ll
need to trust the developer self-signed certificate for localhost. This can be done by
running the following command:

dotnet dev-certs https --trust

When prompted, answer “Yes” to install the cert.

If you don’t install and trust the dev-certs, you’ll get a warning that
you’ll have to accept due to the site not being secured. If you’re
running on a macOS, you’ll likely have to enter your password
(twice) to accept the certificate.

Your First Blazor App with the .NET CLI | 15

Run the App
To run the template app, use the following command:

dotnet run

The command output will look similar to the following, and one of the first output
lines will show where the app is hosted:

..\FirstApp> dotnet run
Building...
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:7024
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5090
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: ../repos/FirstApp

The localhost URL is the current device hostname with a randomly available port
number. Navigate to the URL with the https:// scheme: in my example, https://
localhost:7024 (yours will likely be different). The app will launch, and you’ll be
able to interact with a fully functional Blazor WebAssembly app template as shown in
Figure 1-3.

Figure 1-3. First Blazor template app

To stop the app from running, end the terminal session. You can close your IDE after
you’ve stopped the app from running. This Blazor WebAssembly template is very well
documented and limited in what it shows off.

Now that you know how to start creating your app, you might ask, “Where am I
supposed to put my code?” I’m glad you asked.

16 | Chapter 1: Blazing into Blazor

https://oreil.ly/qVd9M
https://oreil.ly/qVd9M

The Code Must Live On
Code is only as good as where it is stored. If your code lives on your machine, and
yours alone, that’s where it will stay forever. It won’t go anywhere else, and that’s a
shame. GitHub provides a hosted solution for version control using Git, and it’s the
best of its kind. Call me biased.

All of the source code for this book can be found on GitHub. If you want to follow
along in the code itself, you can clone the repository locally on your machine with the
following git CLI command:

git clone https://github.com/IEvangelist/learning-blazor.git

This command will clone the repository into a new directory
named learning-blazor. The new directory is from the root of
where this command was executed. For more information about
cloning a repository, see Git’s git clone documentation.

Once you’ve cloned the repository, you can open the solution file or the root direc‐
tory in your favorite IDE. You can run the app locally if you’d like to explore it before
you start the book. You’ll need to read through the Getting Started markdown file.

Alternatively, you can visit the live site to explore its functionality. Using your favorite
web browser, navigate to https://webassemblyof.net. If you have a Twitter, Google, or
GitHub account, you could log in to the site and explore the app. If you don’t have
one of those kinds of accounts, or if you’d rather not log in with them, you can
register for an account. The only requirement is a valid email address that can be
verified. A verification email will be sent to the address you provide, and you’ll create
a password to use when logging in. In the next section, you’ll learn how this code is
version-controlled.

For code to live on, we need to have version control. Our Blazor application can use
GitHub Actions to build, test, analyze, source generate, package, and deploy anything
we require. GitHub Actions are explored a bit more in Chapters 5 and 9. GitHub
Actions are available for free for up to 2,000 minutes a month and 500 MB of stor‐
age. GitHub Actions are enjoyable to create and powerful for automating processes.
With the GitHub Action Marketplace, you can discover published actions that you
can consume in workflows. A GitHub Action workflow is defined as a YAML file
that contains the instructions to run your composed GitHub Actions. For example,
whenever code is pushed to the main branch in my GitHub repo, a build validation
is triggered. The build validation is defined in a YAML file called .github/workflows/
build-validation.yml:

The Code Must Live On | 17

https://oreil.ly/learning-blazor-code
https://oreil.ly/7AMOX
https://oreil.ly/fdnIo
https://oreil.ly/jPOjv
https://webassemblyof.net

name: Build Validation

on:
 push:
 branches: [main]
 paths-ignore:
 - '**.md'
 pull_request:
 types: [opened, synchronize, reopened, closed]
 branches:
 - main # only ran on the main branch

env:
 TEST_USERNAME: ${{ secrets.TEST_USERNAME }}
 TEST_PASSWORD: ${{ secrets.TEST_PASSWORD }}

jobs:
 build:
 name: build
 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v2

 - name: Setup .NET 6.0
 uses: actions/setup-dotnet@v1
 with:
 dotnet-version: 6.0.x

 - name: Install dependencies
 run: dotnet restore

 - name: Build
 run: |
 dotnet build --configuration Release --no-restore

 - uses: actions/setup-node@v1
 name: 'Setup Node'
 with:
 node-version: 18
 cache: 'npm'
 cache-dependency-path: subdir/package-lock.json

 - name: 'Install Playwright browser dependencies'
 run: |
 npx playwright install-deps

 - name: Test
 run: |
 dotnet test --no-restore --verbosity normal

18 | Chapter 1: Blazing into Blazor

From the perspective of continuous integration and continuous deployment (CI/CD),
this is very powerful.

The preceding GitHub workflow has the following characteristics:

• Its name is “Build.”•
• It is triggered on a push to main, when any file in the changeset ends•

with .cs, .css, .json, .razor, or .csproj.
• It defines a single build job, which runs on the latest version of Ubuntu. The•
build job defines several steps:
— Check out the repo at the specific commit that triggered the run.—
— Set up .NET 6.0 within the context of the execution environment.—
— Install dependencies via dotnet restore.—
— Compile the code using dotnet build.—
— Test the code using dotnet test.—

It’s cool getting to see a simple Blazor app running, but what if I told you that you
could learn more about Blazor using the Telerik REPL for Blazor. The Blazor REPL
(read-eval-print-loop) is an online program that allows you to write Blazor code
in the browser and immediately compile and run it. It’s a great way to learn about
Blazor, as it provides an interactive way to explore the code and tighten the feedback
loop for rapid development.

This is but one example among several within the application’s GitHub repo. As a
developer who is onboarding with the sample application, it is important to under‐
stand all of the moving pieces involved. You’ll learn all that there is to know about
the source code. Along the way, you’ll also learn how the code is deployed and hosted
and the general flow of data. Next, we’re going to get a high-level overview of the
application’s architecture.

Perusing the “Learning Blazor” Sample App
Throughout this book, we’ll be working with the Learning Blazor model app. The best
way to learn is to see things in action and get your hands dirty. The app will teach
by providing examples of how to solve various problems. The Learning Blazor model
app leverages a microservice architecture. The application wouldn’t be very exciting
without some sort of meaningful or practical data. And while it’s thrilling to discuss
all the bleeding-edge technologies, it’s much less engaging when the sample source
code lacks real-world appeal.

Perusing the “Learning Blazor” Sample App | 19

https://oreil.ly/y22J4

As I said, we’ll go through each of these projects in the coming chapters, but let’s take
a high-level look at what these projects do and how they’re put together. This should
also give you an idea of all the different things you can do with Blazor and inspire you
to write your own apps.

As shown in Figure 1-4, the app is architected such that all clients must request access
to all APIs through an authentication provider. Once authenticated, the client can
access the Web.Api and the Web.PwnedApi. These APIs rely on other services and
APIs such as Twitter, ASP.NET Core SignalR, Logic Apps, and in-memory cache.
They’re all part of the shared resource group, along with the Azure Static Web App.
As a developer, when you push changes to the GitHub repository, various GitHub
Actions are conditionally triggered that will deploy the latest code to the correspond‐
ing Azure resources. For more information on the various projects, see the Appendix.
The sample application targets .NET 6 and uses C# 10.

Figure 1-4. Architecture diagram

20 | Chapter 1: Blazing into Blazor

Summary
We’ve covered a lot of ground in this chapter. We discussed the origins of Blazor
and .NET web app development. From a language standpoint, we’ve compared Java‐
Script SPAs to those of .NET. I’ve gone over why you’d use Blazor over any other
SPA. You created your first Blazor app from a template, and you were introduced to
the overall architecture of the Learning Blazor model app for this book. In the next
chapter, we’re going to dive into the source code of this app and start talking about
Blazor app startup.

Summary | 21

CHAPTER 2

Executing the App

In this chapter, you’ll learn how a Blazor WebAssembly app starts executing—from
the rendering of static HTML to the invocation of JavaScript that bootstraps Blazor,
you’ll be exploring the anatomy of the app. This includes the Program entry point and
the startup conventions. You’ll learn about the router, client-side navigation, shared
components, and layouts. You’ll also learn about top-level navigation and custom
components in the app. All of this will be taught using the Learning Blazor sample
application’s source code.

Try to embrace the mindset that you’re onboarding as a new developer to an existing
application—much like you would in the real world. Try to imagine that you’re
starting a new journey, where you’re getting brought up to speed on an existing
codebase. The idea is that I’ll be your mentor; I’ll meticulously walk through the
code, presenting it to you and explaining exactly what it’s doing and how it’s doing it.
You’ll learn why certain decisions were made and what alternative approaches should
be considered. You should have a grasp of how the model app works and will be
prepared to work with it in future chapters.

In the previous chapter, you learned a bit about the web app development platform,
the ASP.NET Core as a framework, open source development, the programming
languages of the web, and development environments Now let’s talk code. As Linus
Torvalds, the creator of Linux, said, “Talk is cheap. Show me the code.” The model
app is the basis for the entire book, where you’ll learn how all of the major features of
Blazor work and how to use other amazing features. We’ll look at the code together,
and you’ll get to read the code and let it tell you its own story. In the next few
sections, you’ll learn how the Blazor framework initializes the app and how the app
starts executing. I suggest you check out https://webassemblyof.net to see what the
final web app looks like. Feel free to click around and try out the various features to
familiarize yourself with the app.

23

https://webassemblyof.net

A Love Letter for the Next Developer
Let’s take a moment to show some love for code. Whether you’re a developer moti‐
vated by a paycheck or one who wants to leave the world a better place, we all
appreciate what code can do. At the base level, code simply tells computers what to
do, and that in itself is awesome. But good code, well-written code, is a masterpiece
and is full of love for the next developer. If you write code well, you’re setting up
the next developer who uses your code for success. That developer will be able to
read, understand, debug, maintain, and extend your code. Poorly written code, on the
other hand, is a terrible legacy to pass on. So remember that although the code itself is
important, the human beings behind it are more important.

Requesting the Initial Page
Let’s start by evaluating what happens when a client browser wants to access our
application. It requests the initial page (given its URL), and HTML is returned
from the server. Within the HTML itself, there are <link> and <script> elements.
These define additional references to resources that our Blazor application needs
to start accepting user input with components rendered from the Blazor markup.
The resources include, but are not limited to, CSS, JavaScript, images, Wasm files,
and .NET dynamic-link libraries (.dlls). These additional resources are requested as
part of the initial page load, and while this is happening there can be no interaction
with the app. Depending on the size of the peripheral resources and the connection
speed of the client, the amount of time it takes for the app to become interactive will
vary.

The Time to Interactive (TTI) is a measurement of the amount of time it takes
before a website is ready to accept user input. One of the trade-offs of using Blazor
WebAssembly is that the initial load time of the app is a bit longer than that of
Blazor Server. The app has to be downloaded to the browser before running, whereas
with Blazor Server the app is rendered dynamically on the web host. This requires
the .NET runtime and a configured web server.

One advantage of using Blazor WebAssembly is that the app can be
hosted as a static web app. Serving static files is much faster and
less error-prone than serving dynamic content. But it does come at
a cost. The app will be downloaded to the client browser, and the
client browser will have to download the entire app. This can be a
large download, and it can be a bit slower than the app running on
the server.

24 | Chapter 2: Executing the App

The TTI for Blazor WebAssembly can be a bit longer than that of Blazor Server.
Hypothetically, if the TTI is more than a few seconds, users will expect some sort
of visual indication, such as an animated spinning gear cog to show that the app is
loading.

With Blazor WebAssembly, you can lazy load full .NET assemblies. This is much
like doing the equivalent thing in JavaScript—where various components are repre‐
sented by JavaScript—but instead we get to use C#. This feature can make your
application more efficient by fetching only the dependent assembly on demand and
when needed. Before showing you how to lazy load assemblies, however, you’ll learn
how the Blazor WebAssembly application startup loads assemblies.

Let’s start by examining the parts of the initial page’s HTML content.

App Startup and Bootstrapping
The following HTML is served to the client, and it’s important to understand what
the client browser will do when it renders it. Let’s jump in and take a look at the
wwwroot/index.html file from the Web.Client project. I know it’s a lot, but read
through it first, and we’ll go through it piece-by-piece after:

<!DOCTYPE html>
<html class="has-navbar-fixed-top">

<head>
 <meta charset="utf-8" />
 <meta name="viewport"
 content="

width=device-width, initial-scale=1.0,
maximum-scale=1.0, user-scalable=no" />

 <title>Learning Blazor</title>

 <link href="https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/bulma.min.css"
 rel="stylesheet">

 <!-- Bulma: micro extensions -->
 <link href="https://cdn.jsdelivr.net/npm/

bulma-slider@2.0.4/dist/css/bulma-slider.min.css"
 rel="preload" as="style" onload="this.rel='stylesheet'">
 <link href="https://cdn.jsdelivr.net/npm/

bulma-quickview@2.0.0/dist/css/bulma-quickview.min.css"
 rel="preload" as="style" onload="this.rel='stylesheet'">
 <link href="https://cdn.jsdelivr.net/npm/

@creativebulma/bulma-tooltip@1.2.0/dist/bulma-tooltip.min.css"
 rel="preload" as="style" onload="this.rel='stylesheet'">
 <link href="https://cdn.jsdelivr.net/npm/

bulma-badge@3.0.1/dist/css/bulma-badge.min.css"
 rel="preload" as="style" onload="this.rel='stylesheet'">

App Startup and Bootstrapping | 25

 <link href="https://cdn.jsdelivr.net/npm/
@creativebulma/bulma-badge@1.0.1/dist/bulma-badge.min.css"

 rel="preload" as="style" onload="this.rel='stylesheet'">
 <link type="text/css" href="https://unpkg.com/bulma-prefers-dark"
 rel="preload" as="style" onload="this.rel='stylesheet'">

 <link href="/css/app.css" rel="stylesheet" />
 <link href="Web.Client.styles.css" rel="stylesheet" />
 <link href="/_content/Web.TwitterComponents/twitter-component.css"
 rel="stylesheet" />

 <link rel="manifest" href="/manifest.json" />
 <link rel="apple-touch-icon" sizes="512x512" href="/icon-512.png" />
 <link rel="apple-touch-icon" sizes="192x192" href="/icon-192.png" />
 <link rel="icon" type="image/png" sizes="32x32" href="/icon-32.png">
 <link rel="icon" type="image/png" sizes="16x16" href="/icon-16.png">

 <base href="/" />

 <script src="https://kit.fontawesome.com/b5bcf1e25a.js"
 crossorigin="anonymous"></script>
 <script src="/js/app.js"></script>
</head>

<body>
 <div id="app">
 <section id="splash" class="hero is-fullheight-with-navbar">
 <div class="hero-body">
 <div class="container has-text-centered">
 <img src="media/blazor-logo.png"
 class="blazor-logo mb-5" />
 <div class="fa-3x is-family-code">

 Blazor WebAssembly: Loading...
 <i class="fas fa-sync fa-spin"></i>
 </div>
 </div>
 </div>
 </section>
 </div>

 <div id="blazor-error-ui">
 <div class="modal is-active">
 <div class="modal-background"></div>
 <div class="modal-content">
 <article class="message is-warning is-medium">
 <div class="message-header">
 <p>

 <i class="fas fa-exclamation-circle"></i>

 Error

26 | Chapter 2: Executing the App

 </p>
 </div>
 <div class="message-body">
 An unhandled error has occurred.
 <button class="button is-danger is-pulled-right"
 onClick="

window.location.assign(window.location.origin)">

 <i class="fas fa-redo"></i>

 Reload
 </button>
 </div>
 </article>
 </div>
 <button class="modal-close is-large" aria-label="close"></button>
 </div>
 </div>

 <script src="/_content/Microsoft.Authentication.WebAssembly.Msal/
AuthenticationService.js"></script>

 <script src="/_framework/blazor.webassembly.js"></script>
 <script>navigator.serviceWorker.register('service-worker.js');</script>
</body>

</html>

Let’s break down each of the primary sections. We’ll start with reading through the
<head> tag’s child elements:

<head>
 <meta charset="utf-8" />
 <meta name="viewport"
 content="

width=device-width, initial-scale=1.0,
maximum-scale=1.0, user-scalable=no" />

 <title>Learning Blazor</title>

 <link href="https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/bulma.min.css"
 rel="stylesheet">

 <!-- Bulma: micro extensions -->
 <link href="https://cdn.jsdelivr.net/npm/

bulma-slider@2.0.4/dist/css/bulma-slider.min.css"
 rel="preload" as="style" onload="this.rel='stylesheet'">
 <link href="https://cdn.jsdelivr.net/npm/

bulma-quickview@2.0.0/dist/css/bulma-quickview.min.css"
 rel="preload" as="style" onload="this.rel='stylesheet'">
 <link href="https://cdn.jsdelivr.net/npm/

@creativebulma/bulma-tooltip@1.2.0/dist/bulma-tooltip.min.css"
 rel="preload" as="style" onload="this.rel='stylesheet'">
 <link href="https://cdn.jsdelivr.net/npm/

App Startup and Bootstrapping | 27

bulma-badge@3.0.1/dist/css/bulma-badge.min.css"
 rel="preload" as="style" onload="this.rel='stylesheet'">
 <link href="https://cdn.jsdelivr.net/npm/

@creativebulma/bulma-badge@1.0.1/dist/bulma-badge.min.css"
 rel="preload" as="style" onload="this.rel='stylesheet'">
 <link type="text/css" href="https://unpkg.com/bulma-prefers-dark"
 rel="preload" as="style" onload="this.rel='stylesheet'">

 <link href="/css/app.css" rel="stylesheet" />
 <link href="Web.Client.styles.css" rel="stylesheet" />
 <link href="/_content/Web.TwitterComponents/twitter-component.css"
 rel="stylesheet" />

 <link rel="manifest" href="/manifest.json" />
 <link rel="apple-touch-icon" sizes="512x512" href="/icon-512.png" />
 <link rel="apple-touch-icon" sizes="192x192" href="/icon-192.png" />
 <link rel="icon" type="image/png" sizes="32x32" href="/icon-32.png">
 <link rel="icon" type="image/png" sizes="16x16" href="/icon-16.png">

 <base href="/" />

 <script src="https://kit.fontawesome.com/b5bcf1e25a.js"
 crossorigin="anonymous"></script>
 <script src="/js/app.js"></script>
</head>

The app uses the web standard UTF-8 character set, and there’s also a viewport
specification, both of which are very common <meta> tags in HTML. We set the
initial <title> of the page to "Learning Blazor". After the title is a set of <link>
elements. If you spend time evaluating alternative options to the default Bootstrap
CSS from the template, you may consider a CSS framework that takes zero JavaScript
dependencies.

In this instance, Bulma was chosen as the CSS framework because it’s amazingly
simple and clean. This is a perfect match for Blazor, as we can use C# instead of
JavaScript to change styles at will. As described in the Bulma documentation, “Bulma
is a CSS library. This means it provides CSS classes to help you style your HTML
code. To use Bulma, you can either use the pre-compiled .css file or install the .sass
files so you can customize it to your needs.” Bulma provides everything needed
to style the website; with extensibility in mind, you have modern utilities, helpers,
elements, components, forms, and layout styles. Bulma also has a huge developer
community following, where extensions are shared. These additional CSS packages
depend on Bulma itself; they just override or extend existing class definitions. This is
the same approach in any web app development and is not unique to Blazor.

When we see a <link> element that has a rel attribute set to "preload", it indi‐
cates that these requests will happen asynchronously. This works by adding the
as="style" onload="this.rel='stylesheet'" attributes. This lets the browser

28 | Chapter 2: Executing the App

https://oreil.ly/kstH3

know that the <link> is for a style sheet. It will also eventually load the resource,
and when it does it will set rel to "stylesheet". Let’s think of this as the hot-swap
on load tactic. We will pull in some additional CSS references for sliders, quick
views, tooltips, and media-query-centric @media (prefers-color-scheme: dark)
{ /* styles */ } functionality. This exposes the ability to detect the client’s pre‐
ferred color scheme and apply the appropriate styles. For example, an alternative
color scheme to the default white is dark. These two color schemes account for the
majority of all web user experiences.

We then define another <link> with an href to the /css/app.css path to the web server.

The important styles from Bulma are not using the hot-swap on load tactic. While
the app is loading, it’s styled appropriately to communicate that the app is working
(see Figure 2-1). The app also preemptively declares <link rel="manifest" href="/
manifest.json" /> with the corresponding <link> icons. This is specifically to
expose icons and the PWA capabilities. Per MDN’s HTML reference guide, “the
HTML < base> element specifies the base URL to use for all relative URLs in a
document. There can be only one <base> element in a document.”

All applications should consider the usage of iconography where possible to make
for a more accessible web experience. Icons, when done correctly, can immediately
convey a message and intent, and often with little text. I proudly use Font Awesome;
they have a free offering and provide seamless integration of it wherever it is needed
in Blazor markup. A <script> points to my Font Awesome kit registered to my app.
The next line, immediately following the Font Awesome source, is the application’s
JavaScript bits. There are three primary areas of focus in web app development, each
within the /js, /css, and /_content directories. After familiarizing yourself with the
child elements of the <head> node, we can move on. Next, we’ll take a look at the
content of the <body> nodes:

<body>
 <div id="app">
 <section id="splash" class="hero is-fullheight-with-navbar">
 <div class="hero-body">
 <div class="container has-text-centered">
 <img src="media/blazor-logo.png"
 class="blazor-logo mb-5" />
 <div class="fa-3x is-family-code">

 Blazor WebAssembly: Loading...
 <i class="fas fa-sync fa-spin"></i>
 </div>
 </div>
 </div>
 </section>
 </div>

App Startup and Bootstrapping | 29

https://oreil.ly/X62KY

 <div id="blazor-error-ui">
 <div class="modal is-active">
 <div class="modal-background"></div>
 <div class="modal-content">
 <article class="message is-warning is-medium">
 <div class="message-header">
 <p>

 <i class="fas fa-exclamation-circle"></i>

 Error
 </p>
 </div>
 <div class="message-body">
 An unhandled error has occurred.
 <button class="button is-danger is-pulled-right"
 onClick="

window.location.assign(window.location.origin)">

 <i class="fas fa-redo"></i>

 Reload
 </button>
 </div>
 </article>
 </div>
 <button class="modal-close is-large" aria-label="close"></button>
 </div>
 </div>

 <script src="/_content/Microsoft.Authentication.WebAssembly.Msal/
AuthenticationService.js"></script>

 <script src="/_framework/blazor.webassembly.js"></script>
 <script>navigator.serviceWorker.register('service-worker.js');</script>
</body>

The first tag in the <body> element is <div id="app">...</div>. This is the root
of the Blazor application, the true SPA. It is very important to understand that the
contents of this target element will be automatically and dynamically changed to
represent the Wasm application’s manipulation of the DOM. Most SPA developers
settle with letting the UX be a giant white wall of 10pt default font with black text that
reads “Loading…” It’s not okay for UX. Ideally, we’d want to provide visual cues to the
user that the application is responsive and loading. One approach to achieve this is
to have a <div> initially represent a basic splash screen. In this case, the model app
will include the Blazor logo image and a message that reads "Blazor WebAssembly:
Loading..." It will also show an animated loading spinner icon.

30 | Chapter 2: Executing the App

<section id="splash">...</section> acts as the loading markup. It will be
replaced when Blazor is ready. This markup is not Blazor but rather HTML and
CSS. This markup will render similarly to that shown in Figure 2-1. Without this
markup, the default loading experience has black text and says “Loading.” This gives
you the ability to customize the splash (or loading) screen UX.

When writing your Blazor apps, you should consider adding a
loading indicator to your application. This is a great way to give
users a sense of progress and avoid a “white screen of death” when
the application is first loaded.

Figure 2-1. An indicator lets the user know the app is loading

In the index.html file, following the app node, there lies the “blazor-error-ui” <div>
element. This is adjusted from the template to be a bit more suited to our app’s
styling. This specific element identifier will be used by Blazor when it’s bootstrapping
itself into the driver seat. If there are any unrecoverable errors, it will show this
element. If all goes well, you shouldn’t see this.

After the error element are a few remaining <script> tags. These are the JavaScript
references for our referenced components, such as authentication and our Twitter
Component library. The final two <script> tags are very important:

<script src="/_framework/blazor.webassembly.js"></script>
<script>navigator.serviceWorker.register('service-worker.js');</script>

The first <script> tag’s referenced JavaScript (the blazor.webassembly.js file) is what
starts the execution of Blazor WebAssembly. Without this line, this app would not
render anything besides a never-ending loading page. This JavaScript file initiates
the boot subroutine from Blazor, where WebAssembly takes hold, JavaScript interop
lights up, and the fun starts! The various .NET executables, namely .dlls, are fetched,
and the Mono runtime is prepared. As part of the Blazor boot subroutine, the app
element is discovered in the document. The entry point of the app is invoked. This is
where the .NET app starts executing in the context of WebAssembly.

The second <script> tag registers the application’s service worker JavaScript code.
This exposes our app as a PWA, which is a nice feature. It’s a way to make your app

App Startup and Bootstrapping | 31

available offline and service worker functionality. For more information about PWAs,
see Microsoft’s “Overview of Progressive Web Apps (PWAs)” documentation.

Blazor WebAssembly App Internals
Every application has a required entry point. In a web client app, that is the
initial request to the web server where the app is hosted. When the _framework/
blazor.webassembly.js file is running, it starts requesting .dlls, and the runtime starts
the Blazor application’s executable. With Blazor WebAssembly, like most other .NET
apps, the Program.cs is the entry point. Example 2-1 is the Web.Client project’s
Program.cs C# file of the model app.

Example 2-1. Web.Client/Program.cs

var builder = WebAssemblyHostBuilder.CreateDefault(args);
builder.RootComponents.Add<App>("#app");
builder.RootComponents.Add<HeadOutlet>("head::after");

if (builder.HostEnvironment.IsDevelopment())
{
 builder.Logging.SetMinimumLevel(LogLevel.Debug);
}

builder.ConfigureServices();

await using var host = builder.Build();

host.TrySetDefaultCulture();
await host.RunAsync();

Blazor relies on dependency injection as a first-class citizen of its core architecture.

Dependency injection (DI) is defined as an object declaring other
objects as a dependency and a mechanism in which these depen‐
dencies are injected into the dependent object. A basic example
of this would be ServiceOne requiring ServiceTwo, and a service
provider instantiates ServiceOne given ServiceTwo as a depend‐
ency. In this contrived example, both ServiceOne and ServiceTwo
would have to be registered with the service provider. ServiceTwo
is instantiated by the provider and passed to ServiceOne as a
dependency whenever ServiceOne is used.

The entry point is succinct and makes use of C#’s top-level program syntax, which
requires less boilerplate, such as omitting a class Program object. We create a default
WebAssemblyHostBuilder from the app’s args. The builder instance adds two root

32 | Chapter 2: Executing the App

https://oreil.ly/5Ji8p

components: first, the App component paired with the #app selector, which will
resolve our <div id="app"></div> element from the previously discussed index.html
file. Second, we add a HeadOutlet component after the <head> content. This Head
Outlet is provided by Blazor, and it enables the ability to dynamically append or
update <meta> tags or related <head> content to the HTML document.

When the application is running in a development environment, the minimum
logging level is set appropriately to debug. The builder invokes ConfigureServices,
which is an extension method that encapsulates the registration of various services
the client app requires. The services that are registered include the following:

ApiAccessAuthorizationMessageHandler

The custom handler used to authorize outbound HTTP requests using an access
token

CultureService

An intermediary custom service used specifically to encapsulate common logic
related to the client CultureInfo

HttpClient

A framework-provided HTTP client configured with the culture services’ two-
letter ISO language name as a default request header

MsalAuthentication

The framework-provided Azure business-to-consumer (B2C) and Microsoft
Authentication Library (MSAL), which is bound and configured for the app’s
tenant

SharedHubConnection

A custom service that shares a single SignalR HubConnection with multiple
components

AppInMemoryState

A custom service used to expose in-memory application state

CoalescingStringLocalizer<T>

A generic custom service that leverages a component-first localization attempt,
falling back to a shared approach

GeoLocationService

The custom client service for querying geographical information given a longi‐
tude and latitude

After all the services are registered, we call builder.Build(), which returns a
WebAssemblyHost object, and this type implements the IAsyncDisposable interface.

Blazor WebAssembly App Internals | 33

As such, we’re mindful to properly await using the host instance. This asynchro‐
nously uses the host and will implicitly dispose of it when it’s no longer needed.

Detecting Client Culture at Startup
You may have noticed that the host had another extension method that was used.
The host.TrySetDefaultCulture method will attempt to set the default culture. The
culture in this context is represented by the CultureInfo .NET object and acts as the
locale of the browser, such as en-US, for example. The extension method is defined
with the WebAssemblyHostExtensions.cs C# file of the Web.Client project:

namespace Learning.Blazor.Extensions;

internal static class WebAssemblyHostExtensions
{
 internal static void TrySetDefaultCulture(this WebAssemblyHost host)
 {
 try
 {
 var localStorage =
 host.Services.GetRequiredService<ILocalStorageService>();
 var clientCulture =
 localStorage.GetItem<string>(StorageKeys.ClientCulture);
 clientCulture ??= "en-US";

 CultureInfo culture = new(clientCulture);
 CultureInfo.DefaultThreadCurrentCulture = culture;
 CultureInfo.DefaultThreadCurrentUICulture = culture;
 }
 catch (Exception ex) when (Debugger.IsAttached)
 {
 _ = ex;
 Debugger.Break();
 }
 }
}

From the host instance, its Services property is available as an IServiceProvider
type. This is exposed as host.Services, and we use it to resolve services from the DI
container. This is referred to as the service locator pattern because services are located
manually from a provider.

You don’t need to use this pattern elsewhere because .NET handles
things. In the spirit of “best practices,” you should always prefer
the framework-provided DI (or third-party) container implemen‐
tations. We’re using it only because we want to load the application
in a specific culture, which starts early.

34 | Chapter 2: Executing the App

https://oreil.ly/PrM7u

We don’t need to use this pattern anywhere else in the app, as the framework will
automatically resolve the services we need through either constructor or property
injection. We start by calling for ILocalStorageService, described in Chapter 7. We
then ask for it to retrieve a string value that corresponds to the StorageKeys.Client
Culture key. StorageKeys is a static class that exposes various literals, constants,
and verbatim values that the app makes use of for consistency. If the clientCulture
value is null, we’ll assign a reasonable default of "en-US".

Since these culture values come from the client, we cannot trust it—this is why we
wrap the attempt to create a CultureInfo in a try/catch block. Finally, we run the
application associated with the contextual host instance. From this entry point, the
App component is the first Blazor component that starts.

Layouts, Shared Components, and Navigation
The App.razor file is the first of all Blazor components, and it contains the <Router>,
which is used to provide data that corresponds to the navigation state. Consider the
following App.razor file markup of the Web.Client project:

<CascadingAuthenticationState>
 <Error>
 <Router AppAssembly="@typeof(App).Assembly" Context="routeData">
 <Found>
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 @if (context.User?.Identity?.IsAuthenticated ?? false)
 {
 <p>
 You are not authorized to access this resource.
 </p>
 }
 else
 {
 <RedirectToLogin />
 }
 </NotAuthorized>
 </AuthorizeRouteView>
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <NotFoundPage />
 </LayoutView>
 </NotFound>
 </Router>
 </Error>
</CascadingAuthenticationState>

Blazor WebAssembly App Internals | 35

This is the top-level Blazor component of the app itself and is named appropriately
as App. The App component is the first component that is rendered. It is the root
component of the application, and all child components of the app are rendered
within this component.

Blazor navigation essentials

Let’s evaluate the App component markup in-depth and understand the various parts.

The <CascadingAuthenticationState> component is the outermost component
within our application. As the name implies, it will cascade the authentication state
through to interested child components.

The approach of cascading state through component hierarchies
has become very common due to its ease of use and similarity
to related patterns, like that of CSS. The same concept is also
applicable at the OS level, with systems such as lightweight direc‐
tory access protocol (LDAP) permissions. Try thinking in graphs
because this is a common pattern in software whenever there is a
graph/tree to cascade over. That’s the idea behind cascading state.

As an example, an ancestor component can define a <CascadingValue> component
with any value. This value can flow down the component hierarchy to any number
of descendant components. Consuming components use the CascadingParameter
attribute to receive the value from the parent. This concept is covered in greater
detail as we continue to explore the app. Let’s continue descending the component
hierarchy.

The first nested child is the Error component. It’s a custom component that is
defined in the Error.razor file:

@inject ILogger<Error> Logger

<CascadingValue Value=this>
 @ChildContent
</CascadingValue>

@code {

 [Parameter]
 public RenderFragment? ChildContent { get; set; } = null!;

 public void ProcessError(Exception ex)
 {
 Logger.LogError("Error:ProcessError - Type: {Type} Message: {Message}",
 ex.GetType(), ex.Message);
 }
}

36 | Chapter 2: Executing the App

The @inject syntax is a Razor directive.

The Error component makes use of cascades.

An @code directive is a way to add C# class-scoped members to a component.

The ChildContent property is a parameter.

The ProcessError method is accessible to all of the consuming components.

There are several common directives that you’ll learn as part of Blazor development.
This specific directive instructs the Razor view engine to inject the ILogger<Error>
service from the service provider. This is how Blazor components use DI, through
property injection instead of constructor injection.

The <CascadingValue> markup includes the template rendering of an @Child
Content. The ChildContent is both a [Parameter] and a RenderFragment. This
allows for the Error component to render any child content, including Blazor com‐
ponents. When there is a single RenderFragment defined as part of a templated
component, its child content can be represented as pure Razor markup.

A RenderFragment is a void returning delegate type that accepts a RenderTree
Builder. It represents a segment of UI content. The RenderTreeBuilder type is a
low-level Blazor class that exposes methods for building a C# representation of the
DOM.

<CascadingValue> is a Blazor (or framework-provided) component that provides a
cascading value to all descendant components. CascadingValue.Value is assigned
this, which is the Error component instance itself. This means that all descendant
components will have access to the ProcessError method if they choose to consume
it. Descendant components would need to define a [CascadingParameter] property
of type Error for it to flow through to it.

The Parameter attribute is provided by Blazor as a way to denote that a property of
a component is a parameter. These are available as binding targets from consuming
components as attribute assignments in Razor markup.

The ProcessError method expects an Exception instance, which it uses to log as
an error. The child content of the Error component is the Router. The Router
component is what enables our SPA’s client-side routing, meaning routing occurs on
the client, and the page doesn’t need to refresh.

Blazor WebAssembly App Internals | 37

The Router

The Router is a framework-provided component that’s used in the src/Web.Client/
App.razor file. It specifies an AppAssembly parameter that is assigned to the
typeof(App).Assembly by convention. Additionally, the Context parameter allows
us to specify the name of the parameter. We assign the name of routeData, which
overrides the default name of context. The Router also defines multiple named
RenderFragment components; because there are multiple, we must explicitly specify
child content. This is where the corresponding RenderFragment name comes in. For
example, when the router is unable to find a matching route, we define what the
page should render the NotFound content. Consider the following NotFound content
section from the Router markup:

<NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <NotFoundPage />
 </LayoutView>
</NotFound>

This layout is based on the MainLayout component and sets its child as the NotFound
Page component. Assuming the user navigates to a route that doesn’t exist, they’d end
up on our custom HTTP 404 page, which is localized and styled consistently with
our app. We’ll handle HTTP status code 401 in the next section. However, when the
router does match an expected route, the Found content is rendered. Consider the
following Found content section from the Router markup:

<Found>
 <AuthorizeRouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)">
 <NotAuthorized>
 @if (context.User?.Identity?.IsAuthenticated ?? false)
 {
 <p>HTTP 401</p>
 }
 else
 {
 <RedirectToLogin />
 }
 </NotAuthorized>
 </AuthorizeRouteView>
</Found>

Redirect to login when unauthenticated

If you recall from earlier, the Found content is just a RenderFragment. The child
content, in this case, is the AuthorizeRouteView component. This route view is
displayed only when the user is authorized to view it. It adheres to MainLayout as
its default. The RouteData is assigned from the contextual routeData. The route

38 | Chapter 2: Executing the App

data itself defines which component the router will render and the corresponding
parameters from the route.

When the user is not authorized, we redirect them to the login screen using the
RedirectToLogin component:

@inject NavigationManager Navigation

@code {
 protected override void OnInitialized()
 {
 string returnUrl = Uri.EscapeDataString(Navigation.Uri);
 Navigation.NavigateTo(
 $"authentication/login?returnUrl={returnUrl}");
 }
}

The RedirectToLogin component requires the NavigationManager.

The OnInitialized method navigates to the authentication login page.

The RedirectToLogin component injects the NavigationManager, and when it’s ini‐
tialized, it navigates to the authentication/login route with the escaped returnUrl
query string. When the user is authorized, the route view renders MainLayout, which
is a subclass of Blazor’s LayoutComponentBase. While the markup defines all of
the layout of the app, it also splats @Body in the appropriate spot. This is another
RenderFragment that is inherited from LayoutComponentBase. The body content is
what the router ultimately controls for its client-side routing. In other words, as users
navigate the site, the router dynamically updates the DOM with rendered Blazor
components within the @Body segment.

We override the OnInitialized method. This is our first look at overriding
ComponentBase class functionality, but this is very common in Blazor. There are
several virtual methods (methods that can be overridden) in the ComponentBase
class, most of which represent different points of a component’s lifecycle.

Blazor component lifecycle

Continuing from the aforementioned RedirectToLogin.razor. file, there is an override
method named OnInitialized. This method is one of several lifecycle methods that
will occur at specific points in the life of a component. Blazor components inherit the
Microsoft.AspNetCore.Components.ComponentBase class. Please consider Table 2-1
for reference.

Blazor WebAssembly App Internals | 39

Table 2-1. ComponentBase lifecycle methods

Order Method name(s) Description
1 SetParametersAsync Sets parameters supplied by the component’s parent in the render tree

2 OnInitialized
OnInitializedAsync

Method invoked when the component is ready to start, having received its initial
parameters from its parent in the render tree

3 OnParametersSet

OnParametersSetAsync

Method invoked when the component has received parameters from its parent in
the render tree and the incoming values have been assigned to properties

4 OnAfterRender
OnAfterRenderAsync

Method invoked after each time the component has been rendered

The MainLayout component
The MainLayout.razor file, as the name indicates, represents the main layout. Within
this markup, the navigation bar (navbar), header, footer, and content areas are organ‐
ized and structured:

@inherits LayoutComponentBase
@inject IStringLocalizer<MainLayout> Localizer

<section class="hero is-fullheight-with-navbar">
 <div class="hero-head">
 <header class="navbar is-size-5 is-fixed-top">
 <div class="container">
 <div class="navbar-brand">
 <NavLink class="navbar-item" href=""
 Match="NavLinkMatch.All">

 <img src="media/blazor-logo.png"
 height="128" alt="Logo">

 @Localizer["Home"]
 </NavLink>

 <a role="button" class="navbar-burger" aria-label="menu"
 aria-expanded="false" data-target="navbar">

 </div>
 <div id="navbar" class="navbar-menu">
 <div class="navbar-start">
 <AuthorizeView>
 <Authorized>
 <NavBar />
 </Authorized>
 </AuthorizeView>
 </div>
 <div class="navbar-end">

40 | Chapter 2: Executing the App

 <AuthorizeView>
 <Authorized>
 <ThemeIndicatorComponent />
 <AudioDescriptionComponent />
 <LanguageSelectionComponent />
 <NotificationComponent />
 </Authorized>
 </AuthorizeView>
 <LoginDisplay />
 </div>
 </div>
 </div>
 </header>
 </div>

 <div class="hero-body">
 <div class="container has-text-centered is-fluid mx-5">
 @Body
 </div>
 </div>

 <footer class="footer" style="padding-bottom: 4rem;">
 <PageFooter />
 </footer>
</section>

The first two lines of this layout Razor file are two C# expressions, indicated by
their leading @ symbol.

<section> is a native HTML element, and it’s perfectly valid with Razor syntax.

Within the <section> element’s semantic header and navbar, <NavLink> is
referenced.

The next section of the navbar is built out, with a custom NavBar component.

The @Body render fragment is defined within the center of the DOM.

The native HTML footer element is the parent to the custom PageFooter
component, which is responsible for rendering the very bottom of the page.

These two directives represent various behaviors required within this component.
The first of the two is the @inherits directive, which instructs the component
to inherit from the LayoutComponentBase class. This means that it’s a subclass
of the framework’s LayoutComponentBase class. This layout base class is an imple‐
mentation of IComponent and exposes a Body render fragment. This allows us to
make the content whatever the app’s Router provides as output. The main layout
component uses the @inject directive to request the service provider to resolve

Blazor WebAssembly App Internals | 41

an IStringLocalizer<MainLayout>, which is assigned to a component-accessible
member named Localizer. We’ll cover localization in Chapter 5.

<section> is a native HTML element, and it’s perfectly valid Razor syntax. Notice
how we can transition from C# to HTML seamlessly, in either direction. We define
some standard HTML, with a bit of semantic markup. It’s known that you have
familiarity with HTML and CSS, and we won’t put too much emphasis on that.
Because this is such a large project, we’d likely have this HTML and CSS provided by
our imaginary UX department.

Within the <section> element’s semantic header and navbar, <NavLink> is refer‐
enced. This is a framework-provided component. The NavLink component is used
to expose the user interactive aspect of the component’s logic. It handles the routing
of the Blazor application and relies on the value within the browser’s URL bar. This
represents the app’s “Home” navigation route, and it’s branded with the Blazor logo.

The next section of the navigation bar is built out with a custom NavBar component.
There is a bit of familiar protective markup, where the app specifies it’s available
only when AuthorizerView has Authorized content to render in the browser. The
earlier components mentioned were either left-aligned or centered, and the next
components are grouped and pushed to the end or far-right-hand side of the navbar.
Immediately to the right of this component grouping is a LoginDisplay. Let’s have a
deep look into the LoginDisplay component (see also “Understanding the LoginDis‐
play component” on page 51). This group of elements is theme-aware, meaning it
will render in one of two ways, either the dark theme or the light theme (see “The
header and footer components” on page 43 for visual examples).

The @Body render fragment is defined within the center of the DOM. @Body is the
primary aspect of the Blazor navigation and the output target for the router. In other
words, as users navigate, the client-side routing renders HTML within the @Body
placeholder.

The custom NavBar component
Admittedly, there’s a lot to soak in from that layout component markup, but when
you take the time to mentally parse each part, it will make sense. There are a few
custom components, one of which is <NavBar />. This references the NavBar.razor
file:

@inherits LocalizableComponentBase<NavBar>

<NavLink class="navbar-item" href="/chat" Match="NavLinkMatch.Prefix">

 <i class="chat fas fa-comments"></i>

 @Localizer["Chat"]

42 | Chapter 2: Executing the App

</NavLink>
<NavLink class="navbar-item" href="/tweets" Match="NavLinkMatch.Prefix">

 <i class="twitter fab fa-twitter"></i>

 @Localizer["Tweets"]
</NavLink>
<NavLink class="navbar-item" href="/pwned" Match="NavLinkMatch.Prefix">

 <i class="pwned fas fa-user-shield"></i>

 Pwned?
</NavLink>

Inherits from LocalizableComponentBase to take advantage of the base
functionality.

The <NavLink> component is provided by the framework and works with the
router.

The second route is for tweets and corresponds to the /tweets route.

The third route is for Pwned? and corresponds to the /pwned route.

Like most custom components, this too inherits from LocalizableComponentBase
to take advantage of the base functionality. The base functionality is detailed in
Chapter 5. The framework-provided <NavLink> component works with the router.
The first route is the chat room and corresponds to the /chat route. While each of
the previous route names is retrieved using the @Localizer indexer, the “Pwned?”
route is not because it’s a brand name.

The header and footer components
The header for the app contains links to Home, Chat, Tweets, Pwned, and Contact
pages. These are all navigable routes that the Router will recognize. The icons to the
right are for Theme, Audio Descriptions, Language Selection, Task List, Notifications,
and Log out. The log-out functionality does rely on the app’s navigation to navigate to
routes, but the other buttons could be considered utilitarian. They open modals for
global functionality and expose user preferences. The header itself supports the dark
and light themes, as shown in Figures 2-2 and 2-3.

Figure 2-2. An example navigation header with the dark theme

Blazor WebAssembly App Internals | 43

Figure 2-3. An example navigation header with the light theme

Let’s look at the PageFooter component first, defined in the PageFooter.razor file:

@inherits LocalizableComponentBase<PageFooter>

<div class="columns has-text-centered">
 <p class="column">
 <strong translate="no">
 Learning Blazor
 by

 David Pine.

 </p>
 <p class="column">
 The
 <i class="fab fa-github"></i> source code
 is licensed

 MIT.

 </p>
 <p class="column">
 @Localizer["Privacy"] •
 @Localizer["Terms"]
 </p>
 <p class="column">
 @_frameworkDescription
 </p>
</div>

The component inherit from the LocalizableComponentBase class.

Column one reads "Learning Blazor by David Pine".

In the second column, there are two links: one for the source codes’ MIT license
and the GitHub source code link.

The third column contains links to the Privacy and Terms and Conditions pages.

The last column contains the .NET runtime version that the client browser is
running.

We are establishing a pattern, by having custom components inherit from the
LocalizableComponentBase common base class. The custom PageFooter component

44 | Chapter 2: Executing the App

is written by defining a four-column layout with centered text. From left to
right starting at column one, the name of the application appears and a byline,
"Learning Blazor by David Pine", is rendered with a nontranslatable bold phrase.
The second column links to the source codes’ MIT license and the GitHub source
code link. The third column contains links to the Privacy and Terms and Conditions
pages, and the text is localized. Localization of Blazor apps is covered in Chapter 5.
The .NET runtime version is useful because it tells the developer immediately what
version of the framework is being used.

More often than not, I prefer to have my Razor markup files accompanied by a
code-behind file. In this way, the separate files help to isolate concerns where markup
exists in Razor and logic exists in C#. For simple components, components that have
a few parameters, and markup elements, it’s fine to just have everything in a Razor
file with an @code directive. But when using the code-behind approach, you might
think of this as component shadowing, as the component’s markup is shadowed by a
C# file from the Visual Studio editor, as shown in Figure 2-4.

Component shadowing is the act of creating a C# file that matches
the name of an existing Razor file but appends the .cs file exten‐
sion. For example, the PageFooter.razor and PageFooter.razor.cs files
exemplify component shadowing because they’re nested in the Vis‐
ual Studio editor and together they both represent the public
partial PageFooter class.

Figure 2-4. Component shadowing in Visual Studio Solution Explorer

Consider the PageFooter.razor.cs component shadow file:

namespace Learning.Blazor.Shared
{

Blazor WebAssembly App Internals | 45

 public partial class PageFooter
 {
 const string CodeUrl =
 "https://github.com/IEvangelist/learning-blazor";
 const string LicenseUrl =
 "https://github.com/IEvangelist/learning-blazor/blob/main/LICENSE";
 const string DavidPineUrl =
 "https://davidpine.net";

 private string? _frameworkDescription;

 protected override void OnInitialized() =>
 _frameworkDescription = AppState.FrameworkDescription;
 }
}

Several constants are defined.

The OnInitialized lifecycle method assigns the framework description.

There are several const string fields defined that contain URL literals. These are
used to bind to the Razor markup. We override the OnInitialized lifecycle method
and assign the _frameDescription value from the inherited LocalizableComponent
Base.AppState variable.

The component is also theme-aware of the client browser preferences for either light
or dark. For example, see Figures 2-5 and 2-6.

Figure 2-5. An example footer with the dark theme

Figure 2-6. An example footer with the light theme

The footer doesn’t strive for too much. It’s intentionally simple, providing only a few
links to relevant information for the app.

The MainLayout component is more than just Razor markup; it, too, has a shadowed
component. Consider the MainLayout.razor.cs file:

using System.Runtime.InteropServices;
using Learning.Blazor.Services;
using Microsoft.AspNetCore.Components;

namespace Learning.Blazor.Shared
{
 public sealed partial class MainLayout : IDisposable

46 | Chapter 2: Executing the App

 {
 [Inject]
 public AppInMemoryState? AppState { get; set; }

 protected override void OnInitialized()
 {
 if (AppState is not null)
 {
 AppState.StateChanged += StateHasChanged;
 AppState.FrameworkDescription =
 RuntimeInformation.FrameworkDescription;
 }

 base.OnInitialized();
 }

 void IDisposable.Dispose()
 {
 if (AppState is not null)
 {
 AppState.StateChanged -= StateHasChanged;
 }
 }
 }
}

MainLayout is a sealed partial class.

The AppInMemoryState instance is injected into the component.

The OnInitialized method is overridden to allow the subscription to the AppIn
MemoryState.StateChanged event.

The Dispose method unsubscribes from the AppInMemoryState.StateChanged
event.

You’ll notice that MainLayout is a sealed partial class; it’s partial so that it can
serve as code-behind to the Razor markup, and it’s sealed so that it’s not inheritable
by other components. It implements the IDisposable interface to perform necessary
cleanup. Let’s ensure that we’re following the concepts of component shadowing and
component inheritance.

The AppInMemoryState instance is injected into the component. This application
state object is in-memory only; if the user refreshes the page, the state is lost.

The OnInitialized method is overridden from the base, and it’s used to subscribe
to the AppInMemoryState.StateChanged event. The event handler is the framework-
provided ComponentBase.StateHasChanged method. Eventing is a common idiom

Blazor WebAssembly App Internals | 47

of C#, and it can be very useful. The StateHasChanged method notifies the com‐
ponent that its state has changed. When applicable, this will cause the compo‐
nent to be rerendered. AppState.FrameworkDescription is assigned from Runtime
Information.FrameworkDescription. This is the value that was displayed in the
right-hand column of the footer, such as “.NET 6.”

The StateHasChanged method should be called only when required
to avoid potentially unnecessarily forcing a component to rerender.
When calling this method in an asynchronous context, wrap it in
an await statement passing it into the InvokeAsync method. This
will execute the supplied work item on the associated renderer’s
synchronization context, ensuring it’s executed on the appropriate
thread.

You may need to explicitly call StateHasChanged in the following conditions:

• An asynchronous handler involves multiple asynchronous phases.•
• The Blazor rendering and event-handling system receives a call from something•

external.
• You need to render a component outside the subtree that is rerendered by a•

particular event.

For more information about triggering a render, see Microsoft’s “ASP.NET Core
Razor Component Rendering” documentation.

The Dispose method ensures that if the AppState instance is not null, it will
unsubscribe from the AppInMemoryState.StateChanged event. This kind of explicit
cleanup helps to ensure that the component will not cause a memory leak due to
event handlers not being unsubscribed.

An in-memory app state model
Blazor apps can store their state using an in-memory methodology. In this approach,
you register your app state container as a singleton service, meaning there’s only one
instance for the app to share. The service itself exposes an event that subscribes to the
StateHasChanged method, and as properties on the state object are updated, they fire
the event. Consider the AppInMemoryState.cs C# file:

using Learning.Blazor.BrowserModels;

namespace Learning.Blazor.Services;

public sealed class AppInMemoryState
{
 private readonly ILocalStorageService _localStorage;

48 | Chapter 2: Executing the App

https://oreil.ly/Kt3cm
https://oreil.ly/Kt3cm

 private string? _frameworkDescription;
 private ClientVoicePreference? _clientVoicePreference;
 private bool? _isDarkTheme;

 public AppInMemoryState(ILocalStorageService localStorage) =>
 _localStorage = localStorage;

 public string? FrameworkDescription
 {
 get => _frameworkDescription;
 set
 {
 _frameworkDescription = value;
 AppStateChanged();
 }
 }

 public ClientVoicePreference ClientVoicePreference
 {
 get => _clientVoicePreference ??=
 _localStorage.GetItem<ClientVoicePreference>(
 StorageKeys.ClientVoice)
 ?? new("Auto", 1);
 set
 {
 _localStorage.SetItem(
 StorageKeys.ClientVoice,
 _clientVoicePreference = value ?? new("Auto", 1));

 AppStateChanged();
 }
 }

 public bool IsDarkTheme
 {
 get => _isDarkTheme ??=
 _localStorage.GetItem<bool>(StorageKeys.PrefersDarkTheme);
 set
 {
 _localStorage.SetItem(
 StorageKeys.PrefersDarkTheme,
 _isDarkTheme = value);

 AppStateChanged();
 }
 }

 public Action<IList<Alert>>? WeatherAlertReceived { get; set; }
 public Action<ContactComponentModel>? ContactPageSubmitted { get; set; }

 public event Action? StateChanged;

Blazor WebAssembly App Internals | 49

 private void AppStateChanged() => StateChanged?.Invoke();
}

These fields and properties represent the various app states.

We will render the FrameworkDescription property.

The AppStateChanged method is called.

There is an Action field named StateChanged.

The AppStateChanged method invokes the StateChanged event.

Several backing fields are declared, which will be used to store the values of various
publicly accessible properties that represent various app states.

As an example of the pattern used to communicate app state changes, consider the
FrameworkDescription property. Its get accessor goes to the backing field, and the
set accessor assigns to the backing field.

After the value has been assigned to the backing field, the AppStateChanged method
is called. This pattern is followed for all properties and their corresponding backing
fields.

The class exposes a nullable Action as an event named StateChanged. Interested
parties can subscribe to this for change notifications.

The AppStateChanged method is expressed as the invocation of the StateChanged
event. It’s conditionally a NOOP (or “no operation”) when the event is null.

This in-memory state management mechanism is used to expose client voice prefer‐
ences, whether or not the client is preferring the dark theme, and the value for the
framework description. To have the application state persist across browser sessions,
you’d use an alternative approach, such as local storage. There are trade-offs in each
approach; while using in-memory app state is less work, it will not persist beyond
browser sessions. To persist beyond browser sessions, you rely on JavaScript interop
to use a local storage mechanism.

If you’re a JavaScript SPA developer, you might be familiar with
the Flux pattern. It was introduced by Facebook to provide a clear
separation of concerns. The pattern grew in popularity with the
React Redux project, which is a JavaScript implementation of the
Flux pattern used in React. There is an implementation of this for
Blazor known as Fluxor by Peter Morris. While it is beyond the
scope of this book, it’s worth exploring as a potential in-memory
state management option.

50 | Chapter 2: Executing the App

https://oreil.ly/nI5v3

Understanding the LoginDisplay component

The LoginDisplay component renders only a few things to the HTML, but there’s a
bit of code to understand:

@inherits LocalizableComponentBase<LoginDisplay>
@inject SignOutSessionStateManager SignOutManager

 <AuthorizeView>
 <Authorizing>
 <button class="button is-rounded is-loading level-item" disabled>
 @Localizer["LoggingIn"]
 </button>
 </Authorizing>
 <Authorized>
 @{
 var user = context.User!;
 var userIdentity = user.Identity!;
 var userToolTip =
 $"{userIdentity.Name} ({user.GetFirstEmailAddress()})";
 }
 <button class="

button is-rounded level-item has-tooltip-right has-tooltip-info"
 data-tooltip=@(userToolTip) @onclick="OnLogOut">

 <i class="fas fa-sign-out-alt"></i>

 @Localizer["LogOut"]
 </button>
 </Authorized>
 <NotAuthorized>
 <button class="button is-rounded level-item" @onclick="OnLogIn">

 <i class="fas fa-sign-in-alt"></i>

 @Localizer["LogIn"]
 </button>
 </NotAuthorized>
 </AuthorizeView>

The component defines two directives.

The component markup uses the framework-provided AuthorizeView

component.

The component defines two directives: one to specify that it inherits from
LocalizableComponentBase and one to inject the SignOutSessionStateManager ser‐
vice. LocalizableComponentBase is a custom base component, which is covered in
Chapter 5.

Blazor WebAssembly App Internals | 51

The component markup uses the AuthorizeView component and its various
authorized-state-dependent templates to render content when the user is currently
authorizing, already authorized, or not authorized. Each of these states has independ‐
ent markup.

When authorizing, the “logging in” message is localized and rendered to the screen.
When the user is authorized, the context exposes the ClaimsPrincipal object that’s
assigned to the user variable. Consider the Localizer object from the previous
markup. This specific type comes from the inheritance of the custom Localizable
ComponentBase<LoginDisplay> class. This Localizer exposes localization function‐
ality that is based on Microsoft’s resource (.resx)-driven key/value pairs (KVPs)
and the frameworks’ IStringLocalizer<T> type. The custom LocalizableComponent
Base.cs class is located in the Components directory.

The code creates a tool tip it will render—the string concatenation of the user’s
name and email address. The tool tip is bound to the button element’s data-tooltip
attribute. This is part of the Bulma CSS framework for tool tips. Hovering over the
logout button will render the message. When the user is not authorized, we render a
button with a localized login message.

Next, let’s take a look at its shadowed component, the LoginDisplay.cs file:

using Microsoft.AspNetCore.Components.Web;

namespace Learning.Blazor.Shared
{
 public partial class LoginDisplay
 {
 [Inject]
 public NavigationManager Navigation { get; set; } = null!;

 void OnLogIn(MouseEventArgs args) =>
 Navigation.NavigateTo("authentication/login", true);

 async Task OnLogOut(MouseEventArgs args)
 {
 await SignOutManager.SetSignOutState();
 Navigation.NavigateTo("authentication/logout");
 }
 }
}

This component provides two functions that use the injected Navigation service. The
Navigation property is assigned by the DI framework and is functionally equivalent
to the component’s @inject directive syntax. Each method navigates to the desired
authentication route. When OnLogOut is invoked, SignOutManager has its sign-out
state set before navigating away. Each route is handled by the app’s corresponding
authentication logic. The user will see their name next to a logout button when

52 | Chapter 2: Executing the App

they’re authenticated, but if they’re not authenticated, they will see only a login
button. Users can sign up with the application by providing and validating their
email. This is managed by Azure Active Directory (Azure AD) business-to-consumer
(B2C). As an alternative to signing up with the application, you can use one of the
available third-party authentication providers, such as Google, Twitter, and GitHub.

Native theme awareness
An app’s ability to be color-scheme aware is highly recommended for all modern web
apps. From CSS, it is easy to specify style rules that are scoped to media-dependent
queryable values. Consider the following CSS:

@media (prefers-color-scheme: dark) {
 /*
 Styles here are only applied when the browser
 has a specified color scheme of "dark".
 */
}

The rules within this media query apply only when the browser is set to prefer
the dark theme. These media queries can also be accessed programmatically from
JavaScript. The window.matchMedia method is used to detect changes to the client
browser preferences. Let’s look first at the ThemeIndicatorComponent.razor file:

@inherits LocalizableComponentBase<ThemeIndicatorComponent>

 <button class="button is-@(_buttonClass)

has-tooltip-left has-tooltip-info is-rounded level-item"
 data-tooltip=@Localizer
 [AppState.IsDarkTheme ? "DarkTheme" : "LightTheme"]>

 <i class="fas fa-@(_iconClass)"></i>

 </button>

<HeadContent>
 <meta name="twitter:widgets:theme"
 content='@(AppState.IsDarkTheme ? "dark" : "light")'>
</HeadContent>

Inherits from the generic LocalizableComponentBase class.

The primary markup for ThemeIndicatorComponent is the button.

ThemeIndicatorComponent makes use of <HeadContent>.

Blazor WebAssembly App Internals | 53

https://oreil.ly/uFPAD

Hopefully, you’re noticing that a lot of components are inheriting from the generic
LocalizableComponentBase class. Again, we’ll cover this in Chapter 5. Just know that
it exposes a Localizer member that lets us get a localized string value given a string
key via a free-range indexer.

The primary markup for ThemeIndicatorComponent is the button. The button’s
class attribute is mixed, with verbatim class names and Razor expressions that are
evaluated at runtime. The _buttonClass member is a C# string field that is bound
to the "is-" prefix. This button also has a tool tip, and its message is conditionally
assigned dependent on the ternary expression from the _isDarkTheme boolean value.
The Font Awesome class is also bound to an _iconClass field member.

ThemeIndicatorComponent makes use of <HeadContent>. This is a framework-
provided component that allows us to dynamically update the HTML’s <head> con‐
tent. It’s very powerful and useful for updating <meta> elements on the fly. When
the theme is dark, the app specifies that the Twitter widgets should also be themed
accordingly.

While the HeadContent component can update meta tags, it’s still
not ideal for search engine optimization (SEO) when using Blazor
WebAssembly. This is because the meta tags are updated dynami‐
cally. To achieve static meta tag values, you’d have to use Blazor
WebAssembly prerendering. For more information about compo‐
nent integration scenarios, see Microsoft’s “Prerender and Integrate
ASP.NET Core Razor Components” documentation.

Next, let’s look at its corresponding component shadow, the C# file ThemeIndicator
Component.razor.cs:

using Learning.Blazor.Extensions;
using Microsoft.JSInterop;

namespace Learning.Blazor.Components
{
 public partial class ThemeIndicatorComponent
 {
 private string _buttonClass =>
 AppState.IsDarkTheme ? "light" : "dark";
 private string _iconClass =>
 AppState.IsDarkTheme ? "moon" : "sun";

 protected override async Task OnInitializedAsync() =>
 AppState.IsDarkTheme =
 await JavaScript.GetCurrentDarkThemePreferenceAsync(
 this, nameof(UpdateDarkThemePreference));

 [JSInvokable]

54 | Chapter 2: Executing the App

https://oreil.ly/NmB4A
https://oreil.ly/NmB4A

 public Task UpdateDarkThemePreference(bool isDarkTheme) =>
 InvokeAsync(() =>
 {
 AppState.IsDarkTheme = isDarkTheme;

 StateHasChanged();
 });
 }
}

The ThemeIndicatorComponent component shadow is defined.

There are a few conditional CSS classes that are bound to field values.

The component overrides OnInitializedAsync, where it performs a bit of app
state theme logic.

The callback method named UpdateDarkThemePreference.

ThemeIndicatorComponent is a read-only indicator of the current theme detected.
There are only two types the app supports: Light and Dark. There are a few private
fields, but you’ll recall that these are accessible to the markup and bound where
needed. These two string fields are simple ternary expressions based on the App
State.IsDarkTheme value. The component overrides OnInitializedAsync, where
it assigns the current state of the AppState.IsDarkTheme variable and calls the Get
CurrentDarkThemePreference method, which is an IJSRuntime extension method.
This method requires the ThemeIndicatorComponent to reference itself and the call‐
back method name. C#’s nameof expression produces the name of its argument,
which in this case is the callback. This means that we’re registering our .NET compo‐
nent to receive a callback from the JavaScript side given a .NET object reference.

The callback method named UpdateDarkThemePreference expects the isDarkTheme
value. The method must be decorated with the JSInvokable attribute for it to be call‐
able from JavaScript. Since this callback can be invoked anytime after the component
is initialized, it must use the combination of InvokeAsync and StateHasChanged:

InvokeAsync

Executes the supplied work item on the associated renderer’s synchronization
context.

StateHasChanged

Notifies the component that its state has changed. When applicable, this will
cause the component to be rerendered.

Blazor WebAssembly App Internals | 55

Let’s now consider the following JSRuntimeExtensions.cs C# file for the GetCurrent
DarkThemePreferenceAsync extension method:

using Microsoft.JSInterop;

namespace Learning.Blazor.Extensions;

internal static class JSRuntimeExtensions
{
 internal static async ValueTask<bool> GetCurrentDarkThemePreferenceAsync<T>(
 this IJSRuntime javaScript,
 T dotnetObj,
 string callbackMethodName) where T : class =>
 await javaScript.InvokeAsync<bool>(
 "app.getClientPrefersColorScheme",
 "dark",
 DotNetObjectReference.Create(dotnetObj),
 callbackMethodName);
}

The dotnetObj parameter is generic and constrained to class.

The javaScript runtime instance calls interop methods.

The "app.getClientPrefersColorScheme" method is called.

An argument with a value of "dark" is passed to the "app.getClientPrefers
ColorScheme" method.

DotNetObjectReference.Create(dotnetObj) creates an instance of DotNet

ObjectReference<ThemeIndicatorComponent>.

callbackMethodName is the calling method name.

The extension method defines a generic type parameter, T, which is constrained to a
class. The object instance, in this case, is ThemeIndicatorComponent, but it could be
any class.

The javaScript runtime instance is used to call a ValueTask<bool> returning
interop function. The "app.getClientPrefersColorScheme" method is a JavaScript
method that is accessible on the window scope.

The hardcoded value of "dark" is passed to the app.getClientPrefersColorScheme
function as the first parameter. It’s hardcoded because we know that we’re trying to
evaluate whether or not the current client browser prefers the dark theme. When they
do, this will return true.

56 | Chapter 2: Executing the App

DotNetObjectReference.Create(dotnetObj) creates an instance of DotNetObject
Reference<ThemeIndicatorComponent>, and this is passed to the corresponding
JavaScript function as the second parameter. This is used as a reference so that
JavaScript can call back into the .NET component.

callbackMethodName is a method name from the calling ThemeIndicatorComponent
instance that is decorated with a JSInvokable attribute. This method can and will be
called from JavaScript when needed.

Considering this is your first look at JavaScript interop, let me anticipate and answer a
few questions you may have:

Question
Where is this JavaScript coming from, and what does it look like?

Answer
This JavaScript is part of the app.js file that was referenced in the index.html. It’s
served under the wwwroot folder. We’ll look at the source in the next section.

Question
What capabilities does it have?

Answer
That depends on what you’re looking to achieve, but really, anything you might
imagine. For this specific use case, the JavaScript will expose a utilitarian helper
function named getClientPrefersColorScheme. Internally, JavaScript relies on
the window.matchMedia APIs. The .NET code makes an interop call into Java‐
Script and passes a component reference. The JavaScript code registers an event
handler to monitor whether the user changes their color scheme preference. The
current preference is returned immediately back to .NET from JavaScript, but
the event handler is still registered. If the user preference changes, using the
given component reference, the JavaScript code will make an interop call back
into .NET with the new color scheme preference. This exemplifies bidirectional
interop.

Question
When do I need to write JavaScript interop code?

Answer
Whenever you need finite control over a sequence of JavaScript APIs. A good
example is when you need to interact with a third-party library or when calling
native JavaScript APIs. You’ll see some good examples for when it’s appropriate to
write JavaScript interop code throughout the book.

Blazor WebAssembly App Internals | 57

Blazor is responsible for manipulating the DOM. If Blazor doesn’t
support the DOM manipulation your app requires, you might need
to write JavaScript interop code to achieve the desired behavior.
However, this should be rare. Ideally, you’d avoid having two differ‐
ent approaches to the same problem.

This specific JavaScript API uses the media query APIs, which are native to Java‐
Script. Consider the app.js JavaScript file:

const getClientPrefersColorScheme =
 (color, dotnetObj, callbackMethodName) => {
 let media = window.matchMedia(`(prefers-color-scheme: ${color})`);
 if (media) {
 media.onchange = args => {
 dotnetObj.invokeMethodAsync(
 callbackMethodName,
 args.matches);
 };
 }

 return media.matches;
}

// omitted for brevity...

window.app = Object.assign({}, window.app, {
 getClientPrefersColorScheme,
 // omitted for brevity...
});

Consider the getClientPrefersColorScheme function.

A media instance is assigned from the call to window.matchMedia.

The media.onchange event handler property is assigned to an inline function.

When the media instance changes, the .NET object has its callback invoked.

The media.matches value is returned.

getClientPrefersColorScheme is added to the window.app object.

The getClientPrefersColorScheme function is defined as a const function with
color, dotnetObj, and callbackMethodName parameters. A media instance is
assigned from the call to window.matchMedia, given the media query string. The
media.onchange event handler property is assigned to an inline function.

58 | Chapter 2: Executing the App

The event handler inline function relies on the dotnetObj instance, which is a refer‐
ence to the calling Blazor component. This is JavaScript interop in which JavaScript
calls into .NET. In other words, if the user changes their preferences, the onchange
event is fired and the Blazor component has its callbackMethodName invoked.

The media.matches value is returned, indicating to the caller the current value of
whether the media query string matches. getClientPrefersColorScheme is added to
the window.app object.

Putting all of this together, you can reference <ThemeIndicatorComponent /> in any
Blazor component, and you’d have a self-contained, color scheme–aware component.
As the client preferences change, the component dynamically updates its current ren‐
dered HTML representation of the color scheme. The component relies on JavaScript
interop, and it’s seamless from C#.

Summary
In this chapter, I guided you through the inner workings of how Blazor WebAssembly
starts. From the serving and processing of static HTML to the invocation of Java‐
Script that bootstraps Blazor, you explored the anatomy of the app. This includes
the Program entry point and the startup conventions. You learned about the router,
client-side navigation, shared components, and layouts. You also learned about
top-level navigation components in the app and how content is rendered through
RenderFragment placeholders. The model app demonstrated a native color scheme–
aware component and an example of JavaScript interop. In the next chapter, you’ll see
how to author custom Blazor components and how to use JavaScript interop. You’ll
learn more about how Blazor uses authentication to verify a user’s identity and how
to conditionally render markup. Finally, you’ll see how to use various data-binding
techniques and rely on data from HTTP services.

Summary | 59

CHAPTER 3

Componentizing

Our app has lifted off and taken flight—hooray! We’re going to continue our adven‐
ture of learning Blazor by scrutinizing code. In this chapter, you’ll learn how to
author Blazor components and various data-binding approaches. Now that you’re
familiar with how the app starts, we’ll evaluate the default route of the app. This
just so happens to serve the Index.razor file, which is the home screen for the app.
You’ll learn how to limit what a user has access to by protecting components with
declarative attributes and security-semantic hierarchies. You’ll see native JavaScript
geolocation services in use with JavaScript interop. As part of this chapter, you’ll
also learn about some of the peripheral services and supporting architecture that the
Blazor app relies on, such as the “Have I Been Pwned” service and Open Weather
Map APIs.

Design with the User in Mind
All graphical-based applications have users, but not all applications prioritize the
needs of their users. More often than not, apps use your information to drive adver‐
tisements or sell your information to other companies. These apps view you (the user)
as a sales opportunity or a data point.

The Learning Blazor app was designed with its users in mind. As such, it authenti‐
cates the user’s identity to determine what actions the app takes (for more informa‐
tion, see “Identity and Authentication” on page 62).

When users log in to the app, meaning, once the web server has authenticated a user
with the Azure AD B2C tenant, a JSON Web Token (JWT; or just bearer token) is
returned. The app redirects to a third-party site and prompts for credentials. The UX
for the model app renders as depicted in Figure 3-1.

61

Identity and Authentication
Identity is a unique representation of a user within a computer system. For example,
an email address, user identifier, phone number, and the user’s name could all be a
collection of attributes used to uniquely identify a single user.

Authentication is the act of requesting a trusted third-party entity to validate an
individual’s identity. For example, when a user attempts to log in to an app, an
authentication provider can be used to verify their claimed identity.

Authorization is a related concept that will be discussed in “Authorization” on
page 73.

Figure 3-1. Azure AD B2C sign-in screen

62 | Chapter 3: Componentizing

The authentication token flows through peripheral services and resources as needed.
For example, this token could be represented as a client browser cookie when used
with the Web.Client project. Wherever this token resides, whether in the server or on
the client-side app, the authenticated users’ information is represented as a collection
of key/value pairs (KVPs), which are referred to as claims. A user is represented
as a ClaimsPrincipal object. ClaimsPrincipal has an Identity property, which
is available at runtime with a ClaimsIdentity instance. When a service requires
authentication and a request provides a valid authentication token, the requested
claims are provided. At this time, we can demand various attributes (or claims) that
a user agrees to share with our application. The log-in UX from the Blazor app is
customizable, and you’ll learn more about that in Chapter 4.

Our app uses these claims to uniquely identify an authenticated user. The claims are
part of the bearer token and are passed to various services that the app relies on.
The claims flow into the “Pwned” service, thus enabling an automated data-breach
detection mechanism on the user’s behalf from their email.

Leveraging “Pwned” Functionality
One of the functionalities of the Learning Blazor app is Pwned functionality, which
tells the user if their email has been compromised. This functionality draws from the
“Have I Been Pwned” API by Troy Hunt. He is one of the most renowned security
experts in the world, and he’s been collecting data breaches for years. He spends time
aggregating, normalizing, and persisting all of this data into a service called “Have I
Been Pwned” (or HIBP for short). This service exposes the ability to check whether
or not a given email address has ever existed within a data breach—at the time of
writing there were nearly 11.5 billion records. This number will certainly continue
to grow. The consuming components and client services of this API are detailed in
Chapter 5.

The HIBP API exposes three primary categories:

Breaches
Aggregated data breach information for security-compromised accounts

Passwords
A massive collection of hashed passwords that have appeared in data breaches,
meaning they’re compromised

Pastes
Information that has been published to a publicly facing website designed to
share content

Design with the User in Mind | 63

https://oreil.ly/Lzlvw

The Learning Blazor application is also dependent on the pwned-client open source
project on GitHub, which is a .NET HTTP client library for accessing the HIBP API
programmatically with C#.

This library comes DI-ready; all the consumer needs is an API key and the NuGet
package.

The pwned-client library exposes the ability for consumers to configure their API
key through well-known configurations. For example, if you wanted to use an envi‐
ronment variable, you’d name it HibpOptions__ApiKey. The double underscore (__)
is used as a cross-platform alternative to delimiting name segments with :, which
wouldn’t work in Linux. The HibpOptions__ApiKey environment variable would map
to the libraries’ strongly typed HibpOptions.ApiKey property value.

To add all of the services to the DI container (IServiceCollection), call one of the
AddPwnedServices overload extension methods:

// Pass an IConfiguration section that maps
// to an object that has configured an ApiKey.
services.AddPwnedServices(
 _configuration.GetSection(nameof(HibpOptions))
);

This first AddPwnedServices overload uses an IConfiguration _configuration and
asks for the "HibpOptions" section. ASP.NET Core has many configuration provid‐
ers, including JSON, XML, environment variables, Azure Key Vault, and so on. The
IConfiguration object can represent all of them. If using environment variables,
for example, it would map that configuration section to the libraries’ dependent
HibpOptions. Likewise, the JSON provider is capable of pulling in configuration from
JSON files such as appsettings.json:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*",
 "HibpOptions": {
 "ApiKey": "<YourApiKey>",
 "UserAgent": "<YourUserAgent>"
 }
}

In this example file, the "HibpOptions" object would map to the HibpOptions
type in the library.

64 | Chapter 3: Componentizing

https://oreil.ly/KHvnn
https://oreil.ly/KHvnn
https://oreil.ly/X48Vq
https://oreil.ly/X48Vq

Alternatively, you can assign the options directly with a lambda expression:

// Provide a lambda expression that assigns the ApiKey directly.
services.AddPwnedServices(options =>
{
 options.ApiKey =
 Environment.GetEnvironmentVariable(
 "HAVE_I_BEEN_PWNED_API_KEY");
});

This AddPwnedServices overload allows you to specify the API key and other options
inline. After the services have been registered and the proper configurations have
been set, the code can use DI for any available abstractions. There are several clients
to use, each with a specific context:

IPwnedBreachesClient

A client to access the Breaches API

IPwnedPasswordsClient

A client to access the Passwords API

IPwnedPastesClient

A client to access the Pastes API

IPwnedClient

A client to access all the APIs and aggregates all other clients into a single client
for convenience

If you’d like to run the sample application locally, you’ll optionally provide several
API keys for various services. For example, to get the “Have I Been Pwned” API key,
you can sign up on their site. This specific API key isn’t free; if you’d rather not sign
up for the API, you can use the following API key to enable a demo mode:

"HibpOptions": {
 "ApiKey": "demo"
}

This could be configured in the appsettings.json file of the Web.Client project.

With .NET 6, minimalism-first is widely emphasized, and for good reason. The idea
is to start small and allow the code to grow with your needs. Minimal APIs focus on
simplicity, ease of use, extensibility, and, for lack of a better word, minimalism.

“Have I Been Pwned” Client Services
Let’s look at the .NET 6 Minimal API project that serves as the Web.PwnedApi of the
Learning Blazor app, the Web.PwnedApi.csproj file:

Design with the User in Mind | 65

https://oreil.ly/XOKoX

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <RootNamespace>Learning.Blazor.PwnedApi</RootNamespace>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Version="2.0.0"
 Include="HaveIBeenPwned.Client" />
 <PackageReference Version="2.0.0"
 Include="HaveIBeenPwned.Client.PollyExtensions" />
 <PackageReference Version="6.0.0"
 Include="Microsoft.AspNetCore.Authentication.JwtBearer"/>
 <PackageReference Version="6.0.0"
 Include="Microsoft.AspNetCore.Authentication.OpenIdConnect" />
 <PackageReference Version="1.21.0"
 Include="Microsoft.Identity.Web" />
 </ItemGroup>

 <ItemGroup>
 <ProjectReference
 Include="..\Web.Extensions\Web.Extensions.csproj" />
 <ProjectReference
 Include="..\Web.Http.Extensions\Web.Http.Extensions.csproj" />
 </ItemGroup>

</Project>

The project is targeting the net.6.0 target framework moniker (TFM).

There are several package references for framework-provided and third-party
libraries.

There are several project references for local dependencies.

The project’s root namespace is defined as Learning.Blazor.PwnedApi, and it targets
the net6.0 TFM. Since we’re targeting .NET 6, we can enable the ImplicitUsings
feature; this means that by default there is a set of usings implicitly available in
all of the project’s C# files. This is an added convenience, as these implicitly added
namespaces are common. The project also defines Nullable as being enabled. This
means that we can define nullable reference types, and the C# compiler platform
(Roslyn) will provide warnings where there is the potential for null values, through
definite assignment flow analysis.

The project adds many package references. One package of particular interest is
HaveIBeenPwned.Client. This is the package that exposes the “Have I Been Pwned”

66 | Chapter 3: Componentizing

HTTP client functionality. The project also defines authentication and identity pack‐
ages, which are used to help protect the exposed APIs.

The project defines two project references, Web.Extensions and Web.Http.Extensions.
These projects provide shared utilitarian functionality. The extensions project is
based on the common language runtime (CLR) types, whereas the HTTP extensions
project is specific to providing a shared transient fault error handling policy.

The Program.cs is a C# top-level program, and it looks like the following:

var builder = WebApplication.CreateBuilder(args).AddPwnedEndpoints();
await using var app = builder.Build().MapPwnedEndpoints();
await app.RunAsync();

The builder is created and endpoints added.

The builder is built and its endpoints are mapped, resulting in an app object.

The app object is run.

The code starts by creating a builder instance of type WebApplicationBuilder,
which exposes the builder pattern (as described in “Builder Pattern” on page 185) for
our web app. From the call to CreateBuilder, the code calls AddPwnedEndpoints.
This is an extension method on the WebApplicationBuilder type that adds all the
desired endpoints. args used to call CreateBuilder are implicitly available and
represent the command-line args given to initiate running the application. These are
available for all C# top-level programs. With the builder, we have access to several
key members:

• The Services property is our IServiceCollection; we can register services for•
DI with this.

• The Configuration property is a ConfigurationManager, which is an imple‐•
mentation of IConfiguration.

• The Environment property provides information about the hosting environment•
itself.

Next, builder.Build() is called. This returns a WebApplication type, and from this
returned object another call is chained to MapPwnedEndpoints. This is yet another
extension method, which encapsulates the logic for mapping the added endpoints to
the WebApplication that it extends. The WebApplication type is an implementation
of the IAsyncDisposable interface. As such, the code can asynchronously await
using the app instance. This is the proper way to ensure that the app will be disposed
of when it’s done running.

Design with the User in Mind | 67

Finally, the code calls await app.RunAsync();. This runs the application and returns
a Task that completes when the app is shut down.

While this Minimal API project has a Program file with a meager three lines of code,
there is a fair amount that’s going on here. This API is exposing a very important
piece of app functionality: the ability to evaluate whether a user’s email has been
part of a data breach. This information is hugely helpful to users, and it needs to
be properly protected. The API itself requires an authenticated user with a specific
Azure AD B2C scope. Consider the WebApplicationBuilderExtensions.cs C# file:

namespace Learning.Blazor.PwnedApi;

static class WebApplicationBuilderExtensions
{
 internal static WebApplicationBuilder AddPwnedEndpoints(
 this WebApplicationBuilder builder)
 {
 ArgumentNullException.ThrowIfNull(builder);

 var webClientOrigin = builder.Configuration["WebClientOrigin"];
 builder.Services.AddCors(
 options =>
 options.AddDefaultPolicy(
 policy =>
 policy.WithOrigins(
 webClientOrigin, "https://localhost:5001")
 .AllowAnyHeader()
 .AllowAnyMethod()
 .AllowCredentials()));

 builder.Services.AddAuthentication(
 JwtBearerDefaults.AuthenticationScheme)
 .AddMicrosoftIdentityWebApi(
 builder.Configuration.GetSection("AzureAdB2C"));

 builder.Services.Configure<JwtBearerOptions>(
 JwtBearerDefaults.AuthenticationScheme,
 options =>
 options.TokenValidationParameters.NameClaimType = "name");

 builder.Services.AddPwnedServices(
 builder.Configuration.GetSection(nameof(HibpOptions)),
 HttpClientBuilderRetryPolicyExtensions.GetDefaultRetryPolicy);

 builder.Services.AddSingleton<PwnedServices>();

 return builder;
 }
}

68 | Chapter 3: Componentizing

The extension defensively checks that the builder is not null.

The WebClientOrigin configuration value is extracted.

builder is configured to use JWT bearer authentication.

The JWT bearer name claim type is set to name.

A call to AddPwnedServices is made, which adds the required services.

.NET 6 introduced a new API on the ArgumentNullException type that will throw if
a given parameter is null. This API is void returning, so it’s not fluent, but it can still
save a few lines of code.

Given the builder.Configuration instance, the code expects a value for the "Web
ClientOrigin" key. This is the origin of the client Blazor application, and it’s used
to configure cross-origin resource sharing, or, simply, CORS. CORS is a policy that
enables different origins to share resources, i.e., one origin can request resources
from another. By default, browsers enforce the “same-origin” policy as a standard to
ensure the browser can make API calls to a different origin. Because the Pwned API
is hosted on a different origin than the Blazor client application, it must configure
CORS and specify the allowable client origins.

The Azure AD B2C tenant is configured. The "AzureAdB2C" section from the app
settings.json file is bound, which sets the instance, client identifier, domain, scopes,
and policy ID.

JwtBearerOptions is configured, specifying the "name" claim as the name claim
type for token validation. This controls the behavior of the bearer authentication
handler. The JwtBearer in the option’s name signifies that these options are for the
JWT bearer settings. JWT stands for JSON Web Token, and these tokens represent an
internet standard for authentication. ASP.NET Core uses these tokens to materialize
the ClaimsPrincipal instance per-authenticated request.

The AddPwnedServices extension method is called, given the configuration’s "Hibp
Options" section and the default HTTP retry policy. This project relies on the
Web.Http.Extensions project. These extensions expose a common set of HTTP-based
retry logic, relying on the Polly library. Following this pattern, the entire app shares
a common transient fault handling policy to help keep everything running smoothly.
Additionally, PwnedServices is added to DI as a singleton.

The next extension method to evaluate after AddPwnedEndpoints is MapPwned
Endpoints. This happens in the WebApplicationExtensions.cs C# file in the Web
.PwnedApi project:

Design with the User in Mind | 69

namespace Learning.Blazor.PwnedApi;

static class WebApplicationExtensions
{
 /// <summary>
 /// Maps "pwned breach data" endpoints and "pwned passwords"
 /// endpoints, with Minimal APIs.
 /// </summary>
 /// <param name="app">The current <see cref="WebApplication"/>
 /// instance to map on.</param>
 /// <returns>The given <paramref name="app"/> as a fluent API.</returns>
 /// <exception cref="ArgumentNullException">When <paramref name="app"/>
 /// is <c>null</c>.</exception>
 internal static WebApplication MapPwnedEndpoints(this WebApplication app)
 {
 ArgumentNullException.ThrowIfNull(app);

 app.UseHttpsRedirection();
 app.UseCors();
 app.UseAuthentication();
 app.UseAuthorization();

 app.MapBreachEndpoints();
 app.MapPwnedPasswordsEndpoints();

 return app;
 }

 internal static WebApplication MapBreachEndpoints(
 this WebApplication app)
 {
 // Map "have i been pwned" breaches.
 app.MapGet("api/pwned/breaches/{email}",
 GetBreachHeadersForAccountAsync);
 app.MapGet("api/pwned/breach/{name}",
 GetBreachAsync);

 return app;
 }

 internal static WebApplication MapPwnedPasswordsEndpoints(
 this WebApplication app)
 {
 // Map "have i been pwned" passwords.
 app.MapGet("api/pwned/passwords/{password}",
 GetPwnedPasswordAsync);

 return app;
 }

 [Authorize, RequiredScope("User.ApiAccess"), EnableCors]
 internal static async Task<IResult> GetBreachHeadersForAccountAsync(

70 | Chapter 3: Componentizing

 [FromRoute] string email,
 PwnedServices pwnedServices)
 {
 var breaches = await pwnedServices.GetBreachHeadersAsync(email);
 return Results.Json(breaches, DefaultJsonSerialization.Options);
 }

 [Authorize, RequiredScope("User.ApiAccess"), EnableCors]
 internal static async Task<IResult> GetBreachAsync(
 [FromRoute] string name,
 PwnedServices pwnedServices)
 {
 var breach = await pwnedServices.GetBreachDetailsAsync(name);
 return Results.Json(breach, DefaultJsonSerialization.Options);
 }

 [Authorize, RequiredScope("User.ApiAccess"), EnableCors]
 internal static async Task<IResult> GetPwnedPasswordAsync(
 [FromRoute] string password,
 IPwnedPasswordsClient pwnedPasswordsClient)
 {
 var pwnedPassword =
 await pwnedPasswordsClient.GetPwnedPasswordAsync(password);
 return Results.Json(pwnedPassword, DefaultJsonSerialization.Options);
 }
}

After ensuring that app is not null, some common middleware is added.

Both Breach and PwnedPasswords endpoints are mapped.

Relying on the framework-provided MapGet, two endpoints are mapped to two
handlers.

Again, endpoints are mapped to handlers, this time for PwnedPasswords.

The handler method can use framework-provided attributes and DI.

Each handler is isolated and declarative.

The code uses HTTPS redirection, CORS, authentication, and authorization middle‐
ware. This middleware is commonplace with ASP.NET Core web app development
and is part of the framework.

The app maps breach endpoints and Pwned passwords endpoints. These are entirely
custom endpoints, defined within extension methods. After these methods are called,
the app is returned, which fulfills a fluent API. This is what enabled the Program to
chain calls after builder.Build().

Design with the User in Mind | 71

The MapBreachEndpoints method maps two patterns and their corresponding
Delegate handler before returning. Each endpoint has a route pattern, which starts
with "api/pwned". These endpoints have placeholders for route parameters. These
mapped endpoint route handlers are executed only when the framework determines
the request has a matching route pattern; for example, an authenticated user could do
the following:

• Request https://example-domain.com/api/pwned/breaches/test@email.org•
and run the GetBreachHeadersForAccountAsync delegate

• Request https://example-domain.com/api/pwned/breach/linkedin and run•
the GetBreachAsync delegate

The MapPwnedPasswordsEndpoints method maps the password’s endpoint to the
GetPwnedPasswordAsync handler.

The GetBreachHeadersForAccountAsync method is an async Task<IResult>

returning method. It declares an Authorize attribute, which protects this han‐
dler from unauthorized requests. Furthermore, it declares a RequiredScope of
"User.ApiAccess", which is the scope defined in the Azure AD B2C tenant. In
other words, this handler (or API, for that matter) will be accessible only to an
authenticated user from our Azure AD B2C tenant who has this specific scope. Users
of the Learning Blazor application will have this scope, therefore, they can access this
API. The method declares the EnableCors attribute, which ensures that this handler
uses the configured CORS policy. Besides all of that, this method is like any other C#
method. It requires a few parameters:

[FromRoute] string email

The FromRoute attribute on the parameter tells the framework that the parameter
is to be provided from the {email} placeholder in the route pattern.

PwnedServices pwnedServices

The service instance is injected from DI, and the breach headers are asynchro‐
nously requested given the email. breaches are returned as JSON.

The GetPwnedPasswordAsync method is much like the previous, except it expects
a password from the route and the IPwnedPasswordsClient instance from the DI
container.

Through the lens of our application, it’s helpful to the users to make this information
readily available. When the user performs their login, we’ll check the HIBP API and
report back. As a user, I can trust that the app will do its intended work and I don’t
have to manually check or wait for an email. As I use the app, it’s helping me by
making information immediately available, which would otherwise be inconvenient

72 | Chapter 3: Componentizing

to dig up. The Learning Blazor application does rely on the HaveIBeenPwned.Client
NuGet package and exposes it through its Web Pwned API project.

Restricting Access to Resources
If you recall, our markup thus far made use of the Authorize framework-provided
component to protect various client rendering of custom components. We can
continue to selectively use this approach to restrict access to functionality in your
app. This is known as authorization.

Authorization
Authorization is the act of using additional user-available information to determine
what a user has access to. For example, imagine that Carol is an authenticated user of
the app and part of the Administrators group or role. She would likely have unlimited
access to resources, while someone else with a lesser role would have restricted access.

This is distinct from identity and authentication, defined in “Identity and Authentica‐
tion” on page 62.

In the case of the sample application, the Index.razor markup file uses authorization
to hide the routes when the app doesn’t have an authenticated user:

@page "/"
@inherits LocalizableComponentBase<Index>

<PageTitle>
 @Localizer["Home"]
</PageTitle>

<AuthorizeView>
 <NotAuthorized>
 <RedirectToLogin />
 </NotAuthorized>
 <Authorized>
 <div id="index" class="tile is-ancestor">
 <div class="tile is-vertical is-centered is-7">
 <div class="tile">
 <div class="tile is-parent">
 <IntroductionComponent />
 </div>
 <div class="tile is-parent">
 <JokeComponent />
 </div>
 </div>
 <div class="tile is-parent">
 <WeatherComponent />
 </div>

Design with the User in Mind | 73

 </div>
 </div>
 </Authorized>
</AuthorizeView>

The default page is the Index page, at the root of the application.

The PageTitle component is used to display the page title.

The AuthorizeView component is used to conditionally display the page content.

NotAuthorized will redirect to the login page.

Authorized will display IntroductionComponent, JokeComponent, and Weather
Component.

This is the first time seeing the @page directive. This is how you template your apps’
navigation and client-side routing. Each component within a Blazor app that defines
a page will serve as a user-navigable route. The routes are defined as a C# string.
This literal is a value used to define the route templates, route parameters, and route
constraints.

PageTitle is a framework-provided component that allows for the dynamic updating
of the page’s head > title, its HTML DOM <title> element. This is the value that
will display in the browser tab UI.

The AuthorizeView template component exposes the NotAuthorized and
Authorized render fragments. These are templates specific to the state of the current
user in context.

When the user is not authorized, we’ll redirect the user. We’ve already discussed the
ability to redirect an unauthenticated user using the RedirectToLogin component.
See “Redirect to login when unauthenticated” on page 38.

When there is an authenticated user, they’ll see three tiles. The first tile is a simple
“thank you” message for you, the user of the app and consumer of my book! It
renders the custom IntroductionComponent. The second tile is the joke component.
It’s backed by an aggregate joke service that randomly attempts to provide developer
humor from multiple sources. The last tile spans the entire row under the intro
and joke components, and it displays WeatherComponent. We’ll discuss each of these
various custom Blazor component implementations and their varying degrees of data
binding and event handling.

74 | Chapter 3: Componentizing

The Introduction Component Says “Hi”
The next component of the Learning Blazor app is the IntroductionComponent that
says “Hi” to those who visit the app, as shown in Figure 3-2.

Figure 3-2. An example rendering of the IntroductionComponent

Have a look at the Components/IntroductionComponent.razor.cs C# file of the
Web.Client project:

using Microsoft.Extensions.Localization;

namespace Learning.Blazor.Components
{
 public partial class IntroductionComponent
 {
 private LocalizedString _intro => Localizer["ThankYou"];
 }
}

The component is using Microsoft.Extensions.Localization.

It defines a single property.

class makes use of the LocalizedString type, which is a locale-specific string. This
comes from the Microsoft.Extensions.Localization namespace.

class defines a single field named _intro, which is expressed as a call to the
Localizer given the "ThankYou" key. This key identifies the resource to resolve
from the localizer instance. In Blazor WebAssembly, localized resources such as those
found in .resx files are available using the IStringLocalizer framework-provided
type. The Localizer type, however, is a custom type named CoalescingString
Localizer. This type is covered in more detail in Chapter 5.

The Introduction Component Says “Hi” | 75

The Localizer member comes from the LocalizableComponentBase type. This
is a subclass for a lot of our components. Now, let’s look at the Introduction
Component.razor markup file:

@inherits LocalizableComponentBase<IntroductionComponent>

<article class="blazor-tile-container">
 <div class="gradient-bg welcome-gradient"></div>
 <div class="icon-overlay heart-svg"></div>
 <div class="blaze-content">
 <p class="title is-family-monospace">
 👋🏽

 @Localizer["Hi"]

 </p>
 <AdditiveSpeechComponent Message=@_intro.Value />
 <p class="has-text-black is-family-monospace welcome-text is-size-5">
 @_intro
 </p>
 </div>
</article>

The component is a beautifully styled <article> element.

There is a localized greeting message.

_intro has its value bound to the Message property of AdditiveSpeech
Component.

The _intro value is also rendered as text within the <p> element.

The HTML markup, for the most part, is pure HTML. If you look it over, you should
notice only a few Blazor bits.

The Razor code context switches from raw HTML to accessing the Localizer
instance in the class. I wanted to demonstrate that you can use fields in the class,
or access other members to achieve one-way data binding. The localized message
corresponding to the "Hi" key is bound after the waving emoji hand. The greeting
message is “Hi, I’m David.”

There is a custom AdditiveSpeechComponent that has a Message parameter bound
to _intro.Value. This component will render a button in the top-right corner of the
tile. This button, when clicked, will read the given Message value to the user. The
AdditiveSpeechComponent component is covered in detail in the next chapter.

The _intro localized resource value is splatted into the <p> element.

76 | Chapter 3: Componentizing

The localized resource files, by convention, have names that align with the file they’re
localizing. For example, the IntroductionComponent.razor.cs file has an Introduction
Component.razor.en.resx XML file. The following is a trimmed-down example of what
its contents would look like:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <data name="Hi" xml:space="preserve">
 <value>Hi, I'm David</value>
 </data>
 <data name="ThankYou" xml:space="preserve">
 <value>
 I'm honored, humbled, and thrilled to invite you
 on a tour of my "Learning Blazor: Build Single-Page Apps
 with WebAssembly and C#" book.
 </value>
 </data>
</root>

Within a top-level root node, there are data nodes. Each data node has a name
attribute, and the name is the key used to retrieve the resource’s value. There can
be any number of data nodes. This example file is in English, while other languages
would use their specific locale identifier in the file name. For example, a French
resource file would be named IntroductionComponent.razor.fr.resx, and it would con‐
tain the same root > data [name] structure, but its value nodes would have French
translations instead. The same is true for any locale the app intends to provide
resources for.

The introduction component shows one-way data binding and localized content. Let’s
extend these two concepts a bit further and explore JokeComponent.

The Joke Component and Services
The joke component of the Learning Blazor app displays a random joke. The joke
component will render a spinner while it’s busy fetching a random joke from the
endpoint. When the joke is retrieved successfully, it will render with a random joke
similar to that shown in Figure 3-3.

I love the Internet Chuck Norris Database (icndb). I use it a lot
for programming demos. Not only does it provide nerdy humor,
but I like its simplicity. It makes for a compelling story. Likewise,
jokes often find their way into my household. Being a father of
three sons, I know that my boys love hearing “dad jokes,” and what
makes them happy brings me joy.

The Joke Component and Services | 77

Figure 3-3. An example rendering of the JokeComponent

This component makes an HTTP request to the api/jokes Web API endpoint.
The joke object itself is shared with both the Web API endpoint and the client-
side code. This helps to ensure that there aren’t any misalignments with the data
structure, which could cause serialization errors or missing data. Consider the Joke
Component.razor markup file:

@inject IJokeFactory JokeFactory
@inject ILogger<JokeComponent> Logger
@inject IStringLocalizer<JokeComponent> Localizer

<article class="blazor-tile-container">
 <div class="gradient-bg jokes-gradient"></div>
 <div class="icon-overlay circle-svg"></div>
 <div class="blaze-content">
 <p class="title">
 🤓
 @Localizer["Jokes"]
 </p>
 <AdditiveSpeechComponent Message=@_jokeText />
 <div class="content">
 @if (_isLoadingJoke)
 {
 <SpinnerComponent />
 }
 else if (_jokeText is not null)
 {
 <blockquote class="has-text-black">
 @_jokeText

 @if (_sourceDetails is { Site: not null })
 {
 <cite>
 —
 @{
 var (site, source) = _sourceDetails.Value;

78 | Chapter 3: Componentizing

 }

 @(source.ToString())

 </cite>
 }
 </blockquote>
 }
 </div>
 </div>
</article>

@code {
 private string? _jokeText = null;
 private JokeSourceDetails? _sourceDetails;
 private bool _isLoadingJoke = false;

 protected override Task OnInitializedAsync() =>
 RefreshJokeAsync();

 private async Task RefreshJokeAsync()
 {
 _isLoadingJoke = true;

 try
 {
 (_jokeText, _sourceDetails) =
 await JokeFactory.GetRandomJokeAsync();
 }
 catch (Exception ex)
 {
 Logger.LogError(ex, ex.Message);
 }
 finally
 {
 _isLoadingJoke = false;
 }
 }
}

IJokeFactory is injected into the component.

Like its counterpart components on the Index page, JokeComponent renders a
styled article element.

When loading, a spinner is displayed.

The @code directive is used to specify the code block.

The RefreshJokeAsync method is called to fetch a new joke.

The Joke Component and Services | 79

The JokeComponent markup starts like most other components, by declaring various
directives. JokeComponent has the framework inject an IJokeFactory, ILogger<Joke
Component>, and IStringLocalizer<JokeComponent>. Any service that is registered
in the DI container is a valid @inject directive target type. This component makes
use of these specific services.

The HTML markup is a bit more verbose than the introduction component. Compo‐
nent complexity is something you should evaluate and be aware of. It’s a good rule of
thumb to limit a component to a single responsibility. The responsibility of the joke
component is to render a joke in HTML. The markup is similar to the introduction
component, providing an emoji and localized title, as well as an AdditiveSpeech
Component that’s bound to the _jokeText variable.

The content markup for this joke component is conditional, and the use of @if,
else if, else, and @switch expressions are supported control structures. This has
been a part of the Razor syntax since the beginning. When the value of _isLoading
Joke evaluates as true, a stylized SpinnerComponent markup is rendered. Spinner
Component is custom too, and it’s a tiny bit of common HTML. Otherwise, when
_jokeText is not null, the random joke text is rendered as a blockquote.

The joke component uses an @code { ... } directive rather than the shadowed
component approach. It’s important to understand that as a developer, you have
options. More often than not, I prefer to not use @code directives. To me, it’s cleaner
to keep them in separate files. I like seeing a C# class, and it feels a bit more natural
to me that way. But if you’re a developer coming from the JavaScript SPA world, it
might feel more natural to have the files together. The point is that the only way to
determine the best approach is to gain a consensus from your team, much like other
stylistic developer decisions.

The RefreshJokeAsync method is called by the OnInitializedAsync lifecycle
method. This means that as part of the component’s initialization, the fetching of
a joke will occur asynchronously. The method starts by setting the _isLoadingJoke
bit to true; this will cause the spinner markup to be rendered—but only temporarily.
The method body tries to ask the IJokeFactory instance to get a JokeResponse
object. When there is a valid response, it’s deconstructed into a tuple assignment
that sets the _jokeText and _sourceDetails fields. These are then rendered as the
contents of the joke itself.

The endpoints that power these jokes aggregate several third-party APIs together. The
various joke endpoints have different data structures, and there are services in place
to converge them into a single endpoint that our Blazor client code consumes.

80 | Chapter 3: Componentizing

Aggregating Joke Services—Laughter Ensues
No application is useful without meaningful data. Our app will have client-specific
weather, random nerdy jokes, real-time web functionality, chat, notifications, a live
Twitter stream, on-demand HIBP security features, and more. This is going to be
fun! But what does this mean for Blazor? Before diving into the weeds with Blazor
frontend development, we should set a few more expectations about the services and
data driving this application—our backend development.

Blazor apps are free to retrieve and use data from any number of other platforms,
services, or web applications. Many good architectures exist, with many possible
solutions for any given problem domain. After all, knowing when to use which
pattern or practice is part of being successful. You should try to identify the flow of
data and basic requirements, where data comes from, and how to access this data.
Does this data change frequently, is the data used to calculate other points of interest,
and is the data dynamic or static? These are the better questions to be asking yourself.
The answer is almost always “It depends.”

Let’s take a look at how the joke service library provides random jokes:

namespace Learning.Blazor.JokeServices;

internal interface IJokeService
{
 JokeSourceDetails SourceDetails { get; }

 Task<string?> GetJokeAsync();
}

Before C# 10, namespace declarations wrapped their containing types in curly brack‐
ets. With C# 10, you can use file-scoped namespace, which enhances the readability
by removing a level of indentation in the code. I like this feature; even though it’s a bit
subtle, it does reduce noise when reading the code.

IJokeService is an internal interface type, which exposes a read-only Joke
SourceDetails property and the ability to request a joke asynchronously. The
internal access modifier means that the joke service is not exposed outside of the
declaring assembly.

The GetJokeAsync method is parameterless and returns a Task<string?>. The ? on
the string type declaration identifies that the returned string could be null (the
default value of the C# reference type string).

We have three different third-party joke web services, all of which are free. The
shapes of the joke responses vary by provider, as do the URLs. We have three separate
configurations, endpoints, and joke models that we have to represent.

The Joke Component and Services | 81

A Word on Asynchronous Code
When making network calls, which are considered I/O-bound work, it’s advisable to
program using the async and await keywords with C#. This approach is known as
the task-based asynchronous pattern (TAP), primarily because the types that represent
an asynchronous operation are “task-like” and often modeled as Task objects. While
this can add overhead in situations where your app is not truly performing async
work, it does allow apps to be more responsive. A responsive app is defined by the
characteristics of having the ability to respond to many concurrent users at the same
time; async (suspended execution, synchronization, and continuation) programming
makes this possible. From a consumer perspective, a responsive app is defined by its
exemplary characteristic of having nonblocking calls. Using this pattern, the server
can handle more concurrent users, but from the user’s perspective it’s about their
experience, and they’re not blocked while the system is processing.

The first IJokeService implementation is the ProgrammingJokeService:

namespace Learning.Blazor.JokeServices;

internal class ProgrammingJokeService : IJokeService
{
 private readonly HttpClient _httpClient;
 private readonly ILogger<ProgrammingJokeService> _logger;

 public ProgrammingJokeService(
 HttpClient httpClient,
 ILogger<ProgrammingJokeService> logger) =>
 (_httpClient, _logger) = (httpClient, logger);

 JokeSourceDetails IJokeService.SourceDetails =>
 new(JokeSource.RandomProgrammingJokeApi,
 new Uri("https://karljoke.herokuapp.com/"));

 async Task<string?> IJokeService.GetJokeAsync()
 {
 try
 {
 // An array with a single joke is returned
 var jokes = await _httpClient.GetFromJsonAsync<ProgrammingJoke[]>(
 "https://karljoke.herokuapp.com/jokes/programming/random",
 DefaultJsonSerialization.Options);

 return jokes?[0].Text;
 }
 catch (Exception ex)
 {
 _logger.LogError("Error getting something fun to say: {Error}", ex);
 }

82 | Chapter 3: Componentizing

 return null;
 }
}

The ProgrammingJokeService class implements the IJokeService interface.

The HttpClient and ILogger<T> instances are injected into the constructor.

The SourceDetails property provides information about the source of the joke.

The GetJokeAsync method returns a Task<string?> that resolves to a joke or
null if no joke could be retrieved.

This service starts with its namespace declaration followed by an internal class
implementation of IJokeService.

The class requires two parameters, an HttpClient and an ILogger<ProgrammingJoke
Service> logger instance. These two parameters are assigned using a tuple literal and
its immediate deconstruction into the field assignments. This allows for a single line
and an expression-bodied constructor. This is just a boilerplate DI approach. The
fields are safely typed as private readonly so that consumers in the class will not
be permitted to mistakenly assign over their values. That is the responsibility of the
DI container.

The programming joke service declaratively expresses its representation of the
SourceDetails member through an implicit target-type new expression. We instan‐
tiate an instance of JokeSourceDetails given the enum value of the underlying
API type JokeSource.RandomProgrammingJokeApi and the joke URL in a .NET Uri
object.

The actual implementation of GetJokeAsync starts by opening with a try and catch
block. _httpClient is used to make an HTTP GET request from the given request
Uri and default JSON serialization options. In the event of an error, Exception details
are logged and null is returned. When there is no error, in other words, “the happy
path,” the response from the request is deserialized into a ProgrammingJoke array
object. When there are jokes, the first joke’s text is returned. If this is null, that is fine
too since we’ll let the consumers handle that. We’ll need to indicate it to them—again,
it’s a string?. I call nullable types “questionable.” For example, given a string?, you
should be asking yourself if this is null and should guard for that appropriately. I’ll
often refer to this type of pattern as a questionable string.

The other two service implementations follow the same pattern, and it becomes clear
that we’ll need a way to aggregate these as they represent multiple implementations of
the same interface. When .NET encounters multiple services registered for the same

The Joke Component and Services | 83

type, they are wrapped in IEnumerable<TService> where TService is one of the
given implementations.

Let’s continue by looking at the other two IJokeService implementations. Consider
the following DadJokeService implementation:

namespace Learning.Blazor.JokeServices;

internal class DadJokeService : IJokeService
{
 private readonly HttpClient _httpClient;
 private readonly ILogger<DadJokeService> _logger;

 public DadJokeService(
 IHttpClient httpClient,
 ILogger<DadJokeService> logger) =>
 (_httpClient, _logger) = (httpClient, logger);

 JokeSourceDetails IJokeService.SourceDetails =>
 new(JokeSource.ICanHazDadJoke,
 new Uri("https://icanhazdadjoke.com/"));

 async Task<string?> IJokeService.GetJokeAsync()
 {
 try
 {
 return await _httpClient.GetStringAsync(
 "https://icanhazdadjoke.com/");
 }
 catch (Exception ex)
 {
 _logger.LogError(
 "Error getting something fun to say: {Error}", ex);
 }

 return null;
 }
}

And the ChuckNorrisJokeService implementation:

namespace Learning.Blazor.JokeServices;

internal class ChuckNorrisJokeService : IJokeService
{
 private readonly ILogger<ChuckNorrisJokeService> _logger;
 private static readonly AsyncLazy<ChuckNorrisJoke[]?> s_embeddedJokes =
 new(async () =>
 {
 var @namespace = typeof(ChuckNorrisJokeService).Namespace;
 var resource = $"{@namespace}.Data.icndb-nerdy-jokes.json";

 var json = await ReadResourceFileAsync(resource);

84 | Chapter 3: Componentizing

 var jokes = json.FromJson<ChuckNorrisJoke[]>();

 return jokes;
 });

 public ChuckNorrisJokeService(
 ILogger<ChuckNorrisJokeService> logger) => _logger = logger;

 JokeSourceDetails IJokeService.SourceDetails =>
 new(JokeSource.InternetChuckNorrisDatabase,
 new Uri("https://www.icndb.com/"));

 async Task<string?> IJokeService.GetJokeAsync()
 {
 try
 {
 var jokes = await s_embeddedJokes;
 if (jokes is { Length: > 0 })
 {
 var randomIndex = Random.Shared.Next(jokes.Length);
 var random = jokes[randomIndex];

 return random.Joke;
 }

 return null;
 }
 catch (Exception ex)
 {
 _logger.LogError(
 "Error getting something fun to say: {Error}", ex);
 }

 return null;
 }

 private static async Task<string> ReadResourceFileAsync(string fileName)
 {
 using var stream =
 Assembly.GetExecutingAssembly()
 .GetManifestResourceStream(fileName);
 using var reader = new StreamReader(stream!);
 return await reader.ReadToEndAsync();
 }
}

To handle the multiple IJokeService implementations, we’ll create a factory that will
aggregate jokes—returning the first successful random implementation’s joke:

namespace Learning.Blazor.JokeServices;

public interface IJokeFactory
{

The Joke Component and Services | 85

 Task<(string, JokeSourceDetails)> GetRandomJokeAsync();
}

This interface defines a single task-based async method that by its name indicates
it gets a random joke. The return type is a Task<(string, JokeSourceDetails)>,
where the generic type constraint on Task is a tuple of string and JokeSource
Details. JokeSourceDetails is shaped as follows:

using System;

namespace Learning.Blazor.Models;

public record JokeSourceDetails(
 JokeSource Source,
 Uri Site);

In C#, positional records are an amazing type. First of all, they’re immutable. Instan‐
ces can be cloned using the with syntax, where property values are overridden
into the copied object. You also get automatic equality and value-based comparison
semantics. They’re declarative and succinct to write. Let’s take a look at the joke
factory next:

namespace Learning.Blazor.JokeServices;

internal class AggregateJokeFactory : IJokeFactory
{
 const string NotFunny = @"Did you hear the one about a joke service that " +
 @"failed to get jokes?" +
 "It's not very funny...";

 private readonly IList<IJokeService> _jokeServices;

 public AggregateJokeFactory(
 IEnumerable<IJokeService> jokeServices) =>
 _jokeServices = jokeServices;

 async Task<(string, JokeSourceDetails)> IJokeFactory.GetRandomJokeAsync()
 {
 string? joke = null;
 JokeSourceDetails sourceDetails = default;

 foreach (var service in _jokeServices.RandomOrder())
 {
 joke = await service.GetJokeAsync();
 sourceDetails = service.SourceDetails;

 if (joke is not null && sourceDetails != default)
 {
 break;
 }
 }

86 | Chapter 3: Componentizing

 return (
 joke ?? NotFunny,
 sourceDetails);
 }
}

The constructor accepts a collection of IJokeService implementations.

The method body of GetRandomJokeAsync uses the RandomOrder function.

The IJokeFactory implementation is named appropriately as AggregateJoke

Factory with its constructor (.ctor) accepting IEnumerable<IJokeService>. These
are the joke services: dad joke service, random programming joke API service, and
internet Chuck Norris database service. These values were provided by the .NET DI
container.

The method body of GetRandomJokeAsync is leveraging an extension method named
RandomOrder on the IEnumerable<T> type. This pattern relies on a fallback pattern
in which services are attempted until one is capable of providing a joke. If no
implementation is capable of providing a joke, the method default values, in this
case, return null. The extension method for random is defined in the Enumerable
Extensions.cs C# file in the Learning.Blazor.Extensions namespace:

namespace Learning.Blazor.Extensions;

public static class EnumerableExtensions
{
 static readonly Random s_random = Random.Shared;

 public static IEnumerable<T> RandomOrder<T>(this IList<T> incoming)
 {
 var used = new HashSet<int>();
 var count = incoming.Count;

 while (used.Count != count)
 {
 var index = s_random.Next(incoming.Count);
 if (!used.Add(index))
 {
 continue;
 }

 yield return incoming[index];
 }

 yield break;
 }
}

The Joke Component and Services | 87

The framework-provided Random type.

The algorithm for randomizing the order is O(1) time, meaning its computation
time is constant regardless of the size of the collection.

The framework-provided Random.Shared instance represents a pseudorandom num‐
ber generator, which is an algorithm that produces a sequence of numbers that meet
basic statistical requirements for randomness.

The random element function works on the incoming collection instance. From
the AggregateJokeFactory instance we pseudorandomly determined, we’ll await its
invocation of the GetJokeAsync method. If the joke returned is null, we’ll coalesce to
"There is nothing funny about this." We then return a tuple with the string
joke and the corresponding service’s source details.

DI from Library Authors
The last part of the joke services library involves the fact that all of our joke services
are DI-friendly, and we can add an extension method on IServiceCollection that
registers them with the DI container. This is a common tactic that I’ll follow for all
libraries that are intended for consumption. Consumers will call AddJokeServices
to register all abstractions with DI. They can start requiring these services for .ctor
injection in classes or with Blazor components through the property injection. The
InjectAttribute and the @inject directive allow for services to be injected into
components through their C# properties.

namespace Learning.Blazor.Extensions;

public static class ServiceCollectionExtensions
{
 public static IServiceCollection AddJokeServices(
 this IServiceCollection services)
 {
 ArgumentNullException.ThrowIfNull(nameof(services));

 services.AddScoped<IJokeService, ProgrammingJokeService>();
 services.AddScoped<IJokeService, DadJokeService>();
 services.AddScoped<IJokeService, ChuckNorrisJokeService>();

 services.AddHttpClient<ProgrammingJokeService>()
 .AddDefaultTransientHttpErrorPolicy();
 services.AddHttpClient<DadJokeService>()
 .AddDefaultTransientHttpErrorPolicy();

 services.AddScoped<IJokeFactory, AggregateJokeFactory>();

 return services;

88 | Chapter 3: Componentizing

https://oreil.ly/sYped

 }
}

The class is using the Learning.Blazor.Http.Extensions namespace.

All three service implementations are added to the services collection.

Each implementation has its corresponding HttpClient.

Collectively, each implementation is exposed through AggregateJokeFactory.

The Learning.Blazor.Http.Extensions namespace represents a shared library,
which contains default, transient fault-handling policies. A reasonable set of defaults
is shared throughout all projects in the solution that use an HttpClient. These
shared fault-handling policies impose an exponential backoff pattern that helps to
automatically retry intermittent HTTP request failures. They generate sleep dura‐
tions that exponentially backoff, in a jittered manner, making sure to mitigate
any correlations. Examples include 850ms, 1455ms, and 3060ms. This is possi‐
ble using the Polly.Contrib.WaitAndRetry library and its Backoff.Decorrelated
JitterBackoffV2 implementation.

Calling AddJokesServices registers all of the corresponding joke services into the
DI container. Once registered in the DI container, consumers can require the IJoke
Factory service and the implementation will be provided. All of this functionality
is exposed to the Web.Client. The JokeComponent uses the IJokeFactory.GetRandom
JokeAsync method. The client code will execute on the client browser, using each
service to make HTTP calls to some external endpoints as needed.

We’ve covered IntroductionComponent and JokeComponent. In the next section,
we’re going to look at a gradually more complex example. I’ll show you how to make
a call to an Azure Function that is co-hosted with the Azure Static Web App. This
Azure Function is implemented in the Web.Functions project.

Azure Functions are a serverless solution (similar to that of AWS
Lambda). They are a great way to build scalable, reliable, and
secure applications using Azure PaaS (platform as a service). For
more information, see Microsoft’s “Introduction to Azure Func‐
tions” documentation.

Forecasting Local Weather
The custom components that we’ve covered thus far started a bit more basic.
IntroductionComponent has a single localized text field that it renders. Joke
Component then demonstrated how to fetch data from an HTTP endpoint with

Forecasting Local Weather | 89

https://oreil.ly/bJr70
https://oreil.ly/bJr70

conditional control structures and loading indicators. WeatherComponent is a parent
component to WeatherCurrentComponent and WeatherDailyComponent. Collectively,
these components display the users’ local current weather and immediate forecast for
the week, as shown in Figure 3-4.

Figure 3-4. An example rendering of the WeatherComponent

All of the weather data is available for free from the Open Weather Map API.
WeatherComponent relies on an HttpClient instance to retrieve weather data. In this
component, we’ll also cover how to use two-way JavaScript interop. Let’s look at the
WeatherComponent.razor markup:

@inherits LocalizableComponentBase<WeatherComponent>

<article class="blazor-tile-container">
 <div class="gradient-bg weather-gradient"></div>
 <div class="icon-overlay zap-svg"></div>
 <div class="blaze-content">
 <p class="title" translate="no">
 🔥
 Blazor @Localizer["Weather"]
 </p>
 <AdditiveSpeechComponent Message=@_model?.Message />
 <div class="columns has-text-centered">
 @switch (_state)
 {
 case ComponentState.Loaded:

 var weather = _model!;
 <div class="column is-one-third">
 <WeatherCurrentComponent Weather=weather
 Localizer=Localizer />
 </div>
 <div class="column">
 <div class="level">
 @foreach (DailyWeather daily in weather.DailyWeather)
 {
 <WeatherDailyComponent Daily="daily"
 GetDailyImagePath=weather.GetDailyImagePath
 GetDailyHigh=weather.GetDailyHigh

90 | Chapter 3: Componentizing

https://oreil.ly/lg5RK

 GetDailyLow=weather.GetDailyLow />
 }
 </div>
 </div>

 break;
 case ComponentState.Loading:
 <div class="column is-full">
 <SpinnerComponent />
 </div>

 break;
 default:
 <div class="column is-full">
 @Localizer["WeatherUnavailable"]
 </div>

 break;
 }
 </div>
 </div>
</article>

The outermost article element is styled as a tile.

The weather tile, like the other two tiles, also makes use of AdditiveSpeech
Component.

In addition to simple @if control structures, you can also use @switch control
structures.

When loaded, the weather tile displays the current weather and the forecast for
the week.

When the component is loading, SpinnerComponent is shown.

The default case renders a localized message that tells the user that weather is
unavailable.

This component’s markup is similar to the other two tiles, IntroductionComponent
and JokeComponent. WeatherComponent is a parent component of two other compo‐
nents: WeatherCurrentComponent and WeatherDailyComponent. Its title is “Blazor
Weather,” and the word weather is localized.

The weather tile, like the other two tiles, also makes use of AdditiveSpeech
Component. When rendered, a speech button is visible in the top-righthand corner of
its parent element. AdditiveSpeechComponent is covered in detail in “Native Speech
Synthesis” on page 117.

Forecasting Local Weather | 91

The @switch control structure is rather nice in markup. The weather component uses
a custom component _state variable to help track the state of the component. The
possible states are unknown, loading, loaded, or error.

When the component is loaded, the current weather (WeatherCurrentComponent)
and daily weather forecast (WeatherDailyComponent) are rendered. The parent com‐
ponent relies on a nullable _model type; the _model is not null when in a loaded
state, and we can tell the compiler that we’re certain of that by using the null-forgiving
operator !. The class-scoped _model variable is assigned to a local-scoped weather
variable. This variable is assigned to its child components’ WeatherCurrentComponent
and WeatherDailyComponent through either helper method delegation or parameter
assignment.

When the component is loading, SpinnerComponent is shown. The default case
renders a localized message that tells the user that the weather is unavailable. This
should happen only in the event of an error.

The weather component markup references the current weather (WeatherCurrent
Component) and daily weather forecast (WeatherDailyComponent) components. These
two components do not make use of component shadowing and are purely for tem‐
plates. Each component defines an @code { ... } directive with several Parameter
properties. They do not require logic or functionality; as such, they’re just markup
bound to given values. This is the WeatherCurrentComponent.razor markup file:

@using Learning.Blazor.Localization;

<div class="box dotnet-box-border is-alpha-bg-50">
 <article class="media">
 <div class="media-left">
 <figure class="image is-128x128">
 <img src=@(Weather.ImagePath)
 class="has-img-shadow"
 alt="@Localizer["CurrentWeatherVisual"]">
 </figure>
 </div>
 <div class="media-content">
 <div class="content has-text-right has-text-light">
 <div>

 @Weather.Temperature

 <i class="fas fa-arrow-up"></i>
 @(Weather.HighTemp) |
 <i class="fas fa-arrow-down"></i>
 @(Weather.LowTemp)

 @Weather.Description

92 | Chapter 3: Componentizing

 <i class="fas fa-wind"></i>
 @Weather.WindSpeed
 <sup>
 @(Localizer[Weather.WindDegree.PositionalCardinal])
 </sup>

 </div>
 </div>
 </div>
 </article>
 <div class="has-text-centered has-text-light">
 @($"{Weather.City}, {Weather.State} ({Weather.Country})")
 </div>
</div>

@code {
 [Parameter]
 public WeatherComponentModel Weather
 {
 get;
 set;
 } = null!;

 [Parameter]
 public CoalescingStringLocalizer<WeatherComponent> Localizer
 {
 get;
 set;
 } = null!;
}

WeatherCurrentComponent renders the image that corresponds to the current
weather, such as clouds, or rain clouds, or perhaps even an image of the sun to
represent a beautiful day. It also displays the temperature, high and low temperatures,
a description of the weather, the wind speed and direction, as well as the city and
state. For example, let’s look at the WeatherDailyComponent.razor markup file:

<div class="level-item has-text-centered has-text-light">
 <div>
 <p class="heading is-size-6 is-underlined">
 @Daily.DateTime.ToString("ddd")
 </p>
 <p class="title">
 <figure class="image is-64x64">
 <img src=@GetDailyImagePath?.Invoke(Daily)
 class="has-img-shadow"
 alt="@Daily.Weather[0].Description">
 </figure>
 </p>
 <p class="heading">@Daily.Weather[0].Main</p>

Forecasting Local Weather | 93

 <p class="heading has-text-weight-bold">
 <i class="fas fa-arrow-up"></i>
 @GetDailyHigh?.Invoke(Daily)
 </p>
 <p class="heading has-text-weight-bold">
 <i class="fas fa-arrow-down"></i>
 @GetDailyLow?.Invoke(Daily)
 </p>
 </div>
</div>

@code {
 [Parameter]
 public DailyWeather Daily { get; set; } = null!;

 [Parameter]
 public Func<DailyWeather, string>? GetDailyImagePath { get; set; }

 [Parameter]
 public Func<DailyWeather, string>? GetDailyHigh { get; set; }

 [Parameter]
 public Func<DailyWeather, string>? GetDailyLow { get; set; }
}

WeatherDailyComponent uses delegates as parameters for some of its data-binding
needs. It renders the day for the forecast and an icon for the forecasted weather, along
with the description and highs and lows.

WeatherComponent relies on several services and refreshes the weather automatically
using a timer, which we will look at next. This component shows a lot of powerful
functionality. Now that you’ve explored the markup, consider the shadowed compo‐
nent C# file, WeatherComponent.razor.cs (Example 3-1).

Example 3-1. Web.Client/Components/WeatherComponent.razor.cs

namespace Learning.Blazor.Components
{
 public sealed partial class WeatherComponent : IDisposable
 {
 private Coordinates _coordinates = null!;
 private GeoCode? _geoCode = null!;
 private WeatherComponentModel<WeatherComponent>? _model = null!;
 private ComponentState _state = ComponentState.Loading;
 private bool _isActive = false;

 private readonly CancellationTokenSource _cancellation = new();
 private readonly PeriodicTimer _timer = new(TimeSpan.FromMinutes(10));

 [Inject]
 public IWeatherStringFormatterService<WeatherComponent> Formatter

94 | Chapter 3: Componentizing

 {
 get;
 set;
 } = null!;

 [Inject]
 public HttpClient Http { get; set; } = null!;

 [Inject]
 public GeoLocationService GeoLocationService { get; set; } = null!;

 protected override Task OnInitializedAsync() =>
 TryGetClientCoordinatesAsync();

 private async Task TryGetClientCoordinatesAsync() =>
 await JavaScript.GetCoordinatesAsync(
 this,
 nameof(OnCoordinatesPermittedAsync),
 nameof(OnErrorRequestingCoordinatesAsync));

 [JSInvokable]
 public async Task OnCoordinatesPermittedAsync(
 decimal longitude, decimal latitude)
 {
 _isGeoLocationPermissionGranted = true;
 _coordinates = new(latitude, longitude);
 if (_isActive) return;

 do
 {
 _isActive = true;

 try
 {
 var lang = Culture.CurrentCulture.TwoLetterISOLanguageName;
 var unit = Culture.MeasurementSystem;

 var weatherLanguages =
 await Http.GetFromJsonAsync<WeatherLanguage[]>(
 "api/weather/languages",
 WeatherLanguagesJsonSerializerContext
 .DefaultTypeInfo);

 var requestLanguage =
 weatherLanguages
 ?.FirstOrDefault(
 language => language.AzureCultureId == lang)
 ?.WeatherLanguageId
 ?? "en";

 WeatherRequest weatherRequest = new()
 {

Forecasting Local Weather | 95

 Language = requestLanguage,
 Latitude = latitude,
 Longitude = longitude,
 Units = (int)unit
 };

 using var response =
 await Http.PostAsJsonAsync("api/weather/latest",
 weatherRequest,
 DefaultJsonSerialization.Options);

 var weatherDetails =
 await response.Content.ReadFromJsonAsync<WeatherDetails>(
 DefaultJsonSerialization.Options);

 await GetGeoCodeAsync(
 longitude, latitude, requestLanguage);

 if (weatherDetails is not null && _geoCode is not null)
 {
 _model = new WeatherComponentModel(
 weatherDetails, _geoCode, Formatter);
 _state = ComponentState.Loaded;
 }
 else
 {
 _state = ComponentState.Error;
 }
 }
 catch (Exception ex)
 {
 Logger.LogError(ex, ex.Message);
 _state = ComponentState.Error;
 }
 finally
 {
 await InvokeAsync(StateHasChanged);
 }
 }
 while (await _timer.WaitForNextTickAsync(_cancellation.Token));
 }

 private async Task GetGeoCodeAsync(
 decimal longitude, decimal latitude, string requestLanguage)
 {
 if (_geoCode is null)
 {
 GeoCodeRequest geoCodeRequest = new()
 {
 Language = requestLanguage,
 Latitude = latitude,
 Longitude = longitude,

96 | Chapter 3: Componentizing

 };

 _geoCode =
 await GeoLocationService.GetGeoCodeAsync(geoCodeRequest);
 }
 }

 [JSInvokable]
 public async Task OnErrorRequestingCoordinatesAsync(
 int code, string message)
 {
 Logger.LogWarning(
 "The user did not grant permission to geolocation:" +
 "({Code}) {Msg}",
 code, message);

 // 1 is PERMISSION_DENIED, error codes greater than 1
 // are unrelated errors.
 if (code > 1)
 {
 _isGeoLocationPermissionGranted = false;
 }
 _state = ComponentState.Error;

 await InvokeAsync(StateHasChanged);
 }

 void IDisposable.Dispose()
 {
 _cancellation.Cancel();
 _cancellation.Dispose();
 _timer.Dispose();
 }
 }
}

There are several fields and properties that WeatherComponent manages.

When the component is initialized, a call to TryGetClientCoordinatesAsync is
made.

The OnCoordinatesPermittedAsync method is called when the user grants per‐
mission to geolocation.

The OnErrorRequestingCoordinatesAsync method is called when the user does
not grant permission to geolocation.

The Dispose method performs cleanup of the CancellationTokenSource and
PeriodicTimer objects.

Forecasting Local Weather | 97

The weather component relies on the browser’s geolocation, which is natively guar‐
ded and requires the user to grant permission. The component has several field
variables used to hold this information if the user permits it. The Coordinates object
is a C# positional record type with latitude and longitude properties. The GeoCode
object contains the city, country, and other similar information. It is instantiated
from an HTTP call to the Big Data Cloud API. This call is conditional and occurs
only when the user grants access to the browser’s geolocation service. In addition to
these variables, there’s a component model and state. There is also PeriodicTimer.
PeriodicTimer was introduced with .NET 6, and it provides a lightweight asynchro‐
nous timer. It is configured to tick every 10 minutes. The component requests that the
DI container inject a formatter, HTTP client, and geolocation service.

When the component is initialized, a call to TryGetClientCoordinatesAsync is awai‐
ted. This method is expressed as a call to JavaScript.GetCoordinatesAsync given
this and two method names. This is a JavaScript interop call from .NET, and the
corresponding extension method is explained in the next section. Just know that
calling TryGetClientCoordinatesAsync will result in one of two methods being
called, either the OnCoordinatesPermittedAsync method or the OnErrorRequesting
CoordinatesAsync method.

When the user grants permission to the app (or if they have already at one point
in time), the OnCoordinatesPermittedAsync method is called and given the geo-
location represented as a latitude and longitude pair. This method is invoked from
JavaScript, so it needs to be decorated with the JSInvokable attribute. When called,
the longitude and latitude values will be provided with valid values. These values
are then used to instantiate the component’s _coordinates object. At this point, the
method tries to make a series of HTTP calls, sequentially relying on the previous
request. The weather service API allows for a set number of languages that it sup‐
ports. We need to use the current browser’s language, which is represented by their
preferred ISO 639-1 two-letter language code. With the language code, we can also
now infer a default unit of measure for the temperature, either Metric °C (degrees
Celsius) or Imperial °F (degrees Fahrenheit). We need to read what languages the
weather API supports, so a call to the api/weather/languages HTTP endpoint
is made. This returns a collection of WeatherLanguage objects. The api/weather/
latest HTTP endpoint returns a WeatherDetails object, which is then used to
instantiate the weather component’s _model. Around the same time that this is hap‐
pening, the _geoCode object is being fetched from the GeoLocationService.GetGeo
CodeAsync.

When there are errors, they’re logged to the browser’s console, and the _state is
set to Error, causing the markup to render that the weather service is unavailable.
All of these changes are then communicated back to the component by calling
StateHasChanged. The UI will rerender when applicable. All of this code is wrapped

98 | Chapter 3: Componentizing

https://oreil.ly/9AtzC

in a do/while construct. while is conditional on _timer and _cancellation.Token.
This is the pattern to use when you need to periodically update values. It occurs
only once from the callback; after that each invocation is controlled and protected by
PeriodicTimer, which coalesces multiple ticks into a single tick between calls to its
WaitForNextTickAsync method.

The OnErrorRequestingCoordinatesAsync method is only called when the user disa‐
bles or later denies location permissions by changing the browser’s setting to blocked.
When the user makes these changes, the browser will prompt the user to refresh the
web app. The native browser permissions API will change the app’s ability to render
weather. This callback method and the OnCoordinatesPermittedAsync methods are
mutually exclusive and will fire only once from the client. The refresh will, however,
trigger a reevaluation of the location permissions API.

The weather component demonstrates how to perform conditional rendering of
various UI elements with Blazor data binding, from showing the user a Spinner
Component that indicates loading, to an error message that encourages the user to
enable the location permissions, to customized weather for your shared location. All
of this happens asynchronously, using DI and powerful C# 10 features on a periodic
timer automatically. The periodic timer implements its IDisposable.Dispose func‐
tionality through the weather component, so as the component is being cleaned up,
so too are the timer’s resources.

From the C# code, you will have noticed the JavaScript.GetCoordinatesAsync
method. The arrival of these coordinates is what initiates the whole process. You will
see a trend that I’m trying to convey here; specifically, I want all JavaScript interop
functions to be encapsulated into extension methods. This will allow for easier unit
and integration testing. For more information on testing, see Chapter 9. Consider the
JSRuntimeExtensions.cs C# file:

using Microsoft.JSInterop;

namespace Learning.Blazor.Extensions;

internal static class JSRuntimeExtensions
{
 internal static ValueTask GetCoordinatesAsync<T>(
 this IJSRuntime jsRuntime,
 T dotnetObj,
 string successMethodName,
 string errorMethodName) where T : class =>
 jsRuntime.InvokeVoidAsync(
 "app.getClientCoordinates",
 DotNetObjectReference.Create(dotnetObj),
 successMethodName,
 errorMethodName);

Forecasting Local Weather | 99

 // Additional methods omitted for brevity.
}

The JSRuntimeExtensions class relies on the Microsoft.JSInterop.IJSRuntime
type.

GetCoordinatesAsync extends the IJSRuntime interface.

Any component can call this extension method and pass itself as the generic-type
parameter.

DotNetObjectReference is created from the given dotnetObj and passed to the
interop call.

Microsoft.JSInterop is a framework-provided namespace. There are many useful
types that you should get used to using:

DotNetObjectReference<TValue>

Wraps a JS interop argument, indicating that the value should not be serialized as
JSON but instead should be passed as a reference. This reference is then used by
JavaScript to call methods on the .NET object it wraps.

IJSRuntime

Represents an instance of a JavaScript runtime to which calls may be dispatched.
This is common to both Blazor Server and Blazor WebAssembly, and it exposes
only asynchronous APIs.

IJSInProcessRuntime

Represents an instance of a JavaScript runtime to which calls may be dispatched.
This is specific to Blazor WebAssembly because the process is shared, unlike
Blazor Server. This interface inherits the IJSRuntime and adds a single synchro‐
nous TResult Invoke<TResult> method.

IJSUnmarshalledRuntime

Represents an instance of a JavaScript runtime to which calls may be dispatched
without JSON marshaling. Currently, it is supported only on WebAssembly and
for security reasons, will never be supported for .NET code that runs on the
server. This is an advanced mechanism that should be used only in performance-
critical scenarios.

The class extends the IJSRuntime type, and the GetCoordinatesAsync method
returns ValueTask and accepts a single generic-type parameter T. The method
requires the T instance and two method names for success and error callbacks. These
method names are used from JavaScript to know what methods to invoke.

100 | Chapter 3: Componentizing

The generic type parameter T is constrained to a class; any component instance will
suffice. The method body is an expression-bodied definition and lacks the async and
await keywords. They are not necessary here because this extension method simply
describes the intended asynchronous operation. Using the given jsRuntime instance
that this method extends, it calls InvokeVoidAsync. This is not to be confused
with “async void”; while the name is a bit confusing, it’s trying to convey that this
JavaScript interop method doesn’t expect a result to be returned. The corresponding
JavaScript function that is invoked is app.getClientCoordinates.

DotNetObjectReference.Create(dotnetObj) wraps dotnetObj, and it is what’s
passed as a reference to the JavaScript call. Blazor’s JavaScript bidirectional interop
support relies on DotNetObjectReference and maintains a special understanding of
these types. successMethodName and errorMethodName are actual method names on
the dotnetObj instance with the JSInvokable attribute.

After looking through the Razor markup, the shadowed component C#, and the
extension method functionality, let’s follow the call through to JavaScript. Consider
the app.js JavaScript file:

const getClientCoordinates =
 (dotnetObj, successMethodName, errorMethodName) => {
 if (navigator && navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(
 (position) => {
 const { longitude, latitude } = position.coords;
 dotnetObj.invokeMethodAsync(
 successMethodName, longitude, latitude);
 },
 (error) => {
 const { code, message } = error;
 dotnetObj.invokeMethodAsync(
 errorMethodName, code, message);
 });
 }
 };

window.app = Object.assign({}, window.app, {
 getClientCoordinates,
 // omitted for brevity...
});

The getClientCoordinates function accepts a few parameters.

If the browser supports the geolocation API, the getCurrentPosition method
is called.

When a position is available, the object reference has its success method
invoked.

Forecasting Local Weather | 101

When an error occurs, the object reference has its error method invoked.

The window.app object is created (or updated) to include getClient

Coordinates.

The JavaScript file defines a const function named getClientCoordinates, which
declares a method signature expecting a dotnetObj, successMethodName, and error
MethodName.

The function starts by asking if the browser’s navigator and navigator

.geolocation are truthy. If they are, a call to getCurrentPosition is invoked. This
function is protected by the browser’s location permissions. If the user has not
provided permission, they are prompted. If they deny this permission, the API will
never call the successful callback.

When the user has already permitted access to the location services, this method
will immediately call the first callback with a valid position. The position object
has the latitude and longitude coordinates. From these coordinates, and the refer‐
ence to dotnetObj with the given successMethodName, it calls back into the .NET
code from JavaScript. This will call the WeatherComponent.OnCoordinatesPermitted
Async method passing the coordinates.

If there is an error for any reason, the second registered callback is invoked given the
error object. The error object has an error code value and a message. The possible
error code values are as follows:

1: PERMISSION_DENIED
When the page didn’t have permission to acquire geolocation information

2: POSITION_UNAVAILABLE
When an internal error occurs trying to acquire geolocation information

3: TIMEOUT
When the allowed time to acquire geolocation information was reached before
acquiring it

Now that the getClientCoordinates function is fully defined, it’s added the app
object on the window scope. If there are multiple JavaScript files defined in your
apps that use the same object name on window, you can use the JavaScript spread
operator to append the new functions into the existing object without overwriting it
completely.

Assuming that you grant permissions to the app when prompted, the markup will
render the component on the user’s screen.

102 | Chapter 3: Componentizing

Summary
In this chapter, the app took flight and you learned how to put the user first by
using the authenticated user information to better personalize the user’s experience
with our app. When user-centric content was rendering, the user is prompted to
allow geolocation services (native to the browser) to use their coordinates. Using
this personal information, the user’s local current weather and weather forecasts are
displayed. You learned how to render component variables through various control
structures, such as @if and @switch component expressions. We saw how to use
services within a component, such as service libraries, and how to make HTTP calls
using the HttpClient type. You learned a pattern to periodically update values auto‐
matically using PeriodicTimer from .NET. In addition to all of this, you also learned
how to use the browser’s native geolocation service from Blazor with two-way
JavaScript interop. The app greets the user with a message, a bit of laughter (or eye
rolls if the jokes are bad enough), and a personalized weather forecast.

In the next chapter, you’ll learn how client services are registered for DI. You’ll learn
how to customize the various authorizing states through component customization
and Blazor render fragmentation. I’ll take you through another JavaScript interop
scenario where you’ll learn how to convince the browser to utter a custom message
with native speech synthesis. In the next chapter, you also learn how components
communicate with events.

Summary | 103

CHAPTER 4

Customizing the User Login Experience

In this chapter, you’re going to build on your understanding of how to authenticate
a user in the context of a Blazor WebAssembly application and customize the authen‐
tication experience. You’ll see a familiar web client startup configuration pattern and
continue to explore a few other areas of the app, such as the registration of client-side
services. From there, I’ll take your knowledge of JavaScript interop further with a
compelling example, using browser native speech synthesis. You’ll learn how the app’s
header functions, and you’ll see a pattern for implementing modal dialogs as a shared
infrastructure within a small base component hierarchy. As part of this, you’ll learn
how to write and handle custom events.

A Bit More on Blazor Authentication
When you use the app, your identity is used to uniquely identify you as a user of
the app. This is true in most app scenarios, including the defaults for both Blazor
hosting models when authentication is configured. A single user can log in from
multiple clients to use the Learning Blazor application. Then a user is authenticated,
meaning that the user has entered their credentials or been redirected through an
authentication workflow. These workflows define a series of sequential steps that
must be followed precisely and successfully to yield an authenticated user. Here are
the basic steps:

1. Get an authorization code: Run the /authorize endpoint providing the requested1.
scope, where the user interacts with the framework-provided UI.

2. Get an access token: When successful, from the authorization code you’ll get a2.
token from the /token endpoint.

3. Use the token: Use the access token to make requests to the various HTTP Web3.
APIs.

105

4. Refresh the token: Tokens typically expire, and when they do, they’re refreshed4.
automatically with an authenticated user. This lets users continue to work
without being prompted to constantly sign in.

The authentication user flow is visualized in Figure 4-1.

Figure 4-1. Authentication user flow

I’m not going to share how to create an Azure AD B2C tenant, because that’s beyond
the scope of this book. Besides, there are plenty of good resources for that sort of
thing. For more information, see Microsoft’s “Create an Azure Active Directory B2C
Tenant” tutorial. Just know that a tenant exists, and it contains two app registrations.
There’s a WebAssembly Client app configured as a SPA and an API app configured
as a server. It’s rather feature-rich, with the ability to customize the client’s HTML
workflow. As an admin, I configured what user scopes exist and what claims are
returned/requested.

During the authentication process, the possible states are listed in the section “Cus‐
tomizing the client’s authorization experience” on page 108.

The user is represented as a series of key/value pairs (KVPs), called claims. The
keys are named and fairly well standardized. The values are stored, maintained, and
retrieved from the trusted third-party entity, also known as authentication providers—
think Google, GitHub, Facebook, Microsoft, and Twitter.

Client-Side Custom Authorization Message Handler Implementation
The Learning Blazor app defines a custom implementation of AuthorizationMessage
Handler. In a Blazor WebAssembly app, you can attach tokens to outgoing requests
using the framework-provided AuthorizationMessageHandler type. Let’s take a look
at the ApiAccessAuthorizationMessageHandler.cs C# file for its implementation:

namespace Learning.Blazor.Handlers;

public sealed class ApiAccessAuthorizationMessageHandler
 : AuthorizationMessageHandler

106 | Chapter 4: Customizing the User Login Experience

https://oreil.ly/C2FgB
https://oreil.ly/C2FgB

{
 public ApiAccessAuthorizationMessageHandler(
 IAccessTokenProvider provider,
 NavigationManager navigation,
 IOptions<WebApiOptions> options) : base(provider, navigation) =>
 ConfigureHandler(
 authorizedUrls: new[]
 {
 options.Value.WebApiServerUrl,
 options.Value.PwnedWebApiServerUrl,
 "https://learningblazor.b2clogin.com"
 },
 scopes: new[] { AzureAuthenticationTenant.ScopeUrl });
}

ApiAccessAuthorizationMessageHandler is a sealed class.

Its constructor takes IAccessTokenProvider, NavigationManager, and IOptions
<WebApiOptions> parameters.

The base constructor takes IAccessTokenProvider and NavigationManager.

The ConfigureHandler method is called by the constructor, setting the
authorizedUrls and scopes properties.

The framework exposes AuthorizationMessageHandler. It can be registered as
an HttpClient instance HTTP message handler, ensuring that access tokens are
appended to outgoing HTTP requests.

The implementation will need the configured IOptions<WebApiOptions> abstraction.
This code is requesting the DI service provider to resolve a strongly typed configura‐
tion object.

Subclasses should use the base class’s ConfigureHandler method to configure them‐
selves. The authorizedUrls array is assigned given the Web API and Pwned Web
API servers’ URLs. This implementation essentially takes a few configured URLs
and sets them as the allow-listed URLs. It also configures an app-specific scope
URL, which is set as the handler’s scopes argument to the ConfigureHandler func‐
tion. This handler can then be added to an IHttpClientBuilder instance using
the AddHttpMessageHandler<ApiAccessAuthorizationMessageHandler> fluent API
call, where you map and configure an HttpClient for DI. This is shown later in
“The Web.Client ConfigureServices Functionality” on page 113. All of the HTTP
requests made from the configured HttpClient instance will append the appropriate
Authorization header with the short-lived access token.

With C# 10’s constant interpolated strings, the tenant host and public app identifier
are formatted along with the API requesting scope. This is a const value defined

A Bit More on Blazor Authentication | 107

in a class named AzureAuthenticationTenant, as shown in the following Azure
AuthenticationTenant.cs C# file:

namespace Learning.Blazor;

static class AzureAuthenticationTenant
{
 const string TenantHost =
 "https://learningblazor.onmicrosoft.com";

 const string TenantPublicAppId =
 "ee8868e7-73ad-41f1-88b4-dc698429c8d4";

 /// <summary>
 /// Gets a formatted string value
 /// that represents the scope URL:
 /// <c>{tenant-host}/{app-id}/User.ApiAccess</c>.
 /// </summary>
 internal const string ScopeUrl =
 $"{TenantHost}/{TenantPublicAppId}/User.ApiAccess";
}

The class is defined as static because I do not intend to let developers create
an instance of my object. The object exposes a single const string value named
ScopeUrl. The first const string is TenantHost. The second const string is the
public application identifier (App Id), or TenantPublicAppId. The ScopeUrl value is
formatted as the host and App Id, with an ending segment representing the scope
specifier "User.ApiAccess".

This is just a utilitarian static class, and it’s a welcome alternative to having a
hardcoded URL in the source. This approach is preferable with each segment of
the fully qualified URL specified as a name identifier. These named values are to
represent the Learning Blazor Azure B2C user scope. This configuration is handled
in the section “The Web.Client ConfigureServices Functionality” on page 113. Next,
we’ll cover the customization of the client authorization UX.

Customizing the client’s authorization experience
The client-side configuration will handle setting up the client’s frontend Blazor code
to depend on specific services, clients, and authenticated endpoints. The user expe‐
riences an authentication flow, and while parts of that flow are configurable from
Azure AD B2C, we’re also able to manage what the user experiences leading up
to and returning from various states of the authentication flow. This is possible
with the "/authentication/{action}" page’s route template, and this belongs to the
Authentication.razor markup:

@page "/authentication/{action}"
@inherits LocalizableComponentBase<Authentication>

108 | Chapter 4: Customizing the User Login Experience

<div class="is-size-3">
 <RemoteAuthenticatorView
 Action=@Action
 LogOut=@LocalizedLogOutFragment
 LogOutSucceeded=@LocalizedLoggedOutFragment
 LogOutFailed=@LocalizedLogOutFailedFragment
 LogInFailed=@LocalizedLogInFailedFragment>

 <LoggingIn>
 <LoadingIndicator Message=@Localizer["CheckingLoginState"]
 HideLogo="true" />
 </LoggingIn>
 <CompletingLogOut>
 <LoadingIndicator Message=@Localizer["ProcessingLogoutCallback"]
 HideLogo="true" />
 </CompletingLogOut>
 <CompletingLoggingIn>
 <LoadingIndicator Message=@Localizer["CompletingLogin"]
 HideLogo="true" />
 </CompletingLoggingIn>

 </RemoteAuthenticatorView>
</div>

The Authentication page renders a RemoteAuthenticatorView component.

Several component templates exist to render different fragments of the authenti‐
cation flow.

Like most of the app’s components, the Authentication page is a component that
also @inherits LocalizableComponentBase. It is considered a page since it defines
an @page "/authentication/{action}" directive. The component is rendered when
the client-side routing handles a navigation event in response to the browser’s URL
requesting of the /authentication/{action} route, where {action} corresponds to
the state of the remote authentication flow.

The component markup wraps the framework-provided RemoteAuthenticatorView
component with a single div and class attribute to control the overall layout.

The RemoteAuthenticatorView component itself is where the customization capabil‐
ity comes from. This component exposes templated render fragment parameters. It
is with this capability that you can provide a custom experience for the following
authentication flow states:

LogOut

The UI to display while the log out event is being handled

LogOutSucceeded

The UI to display while the log out succeeded event is being handled

A Bit More on Blazor Authentication | 109

LogOutFailed

The UI to display while the log out failed event is being handled

LogInFailed

The UI to display while the log in failed event is being handled

LoggingIn

The UI to display while the logging in event is being handled

CompletingLogOut

The UI to display while the completing log out event is being handled

CompletingLoggingIn

The UI to display while the completing logging in event is being handled

Since these are all framework-provided RenderFragment types, we can customize
what is rendered. We can assign to the RemoteAuthenticatorView component’s
parameter properties inline or using multiple templated-parameter syntaxes. The
LoggingIn, CompletingLogOut, and CompletingLoggingIn parameters are assigned
to using the markup syntax, where other components can be referenced directly.

These three parameters are assigned given the custom LoadingIndicator compo‐
nent. The LoadingIndicator component conditionally renders the Blazor logo along
with the loading indicator message and animated/styled spinning icon. All states of
the authentication flow hide the Blazor logo, but they could choose to render it by
setting the LoadingIndicator.HideLogo parameter to false. Each passes a localized
text message to the loading indicator message. These three states are transitional, so
when I was designing this approach I determined it best to use messaging that aligns
with that expectation.

That’s not to say that you couldn’t just as easily use humorous nonsense instead.
The authentication flow state is interesting only when you’re learning about it the
first few times—beyond that we’re all nerds here now, so let’s get creative! We
could replace these states with random facts—who doesn’t love hearing something
interesting? I’ll leave that to you; send me a pull request, and I might just create a
community-supported messaging list. The point is that it is entirely customizable.
The following list contains the initial states that I’ve configured for the app:

LoggingIn

Relies on the "CheckingLoginState" localized message with the following value:
"Reading about the amazing Ada Lovelace (world's first computer

programmer)."

CompletingLogOut

Relies on the "ProcessingLogoutCallback" localized message: "Things aren't
always as they seem."

110 | Chapter 4: Customizing the User Login Experience

CompletingLogin

Relies on the "CompletingLogin" localized message: "Plugging in the random
wires lying around."

The Authentication page component’s shadow uses a slightly different technique
to satisfy the RenderFragment delegate. Recall that a framework-provided Render
Fragment is a void returning delegate type, and it defines a RenderTreeBuilder
parameter. With that in mind, consider the Authentication.razor.cs C# file:

using Microsoft.AspNetCore.Components.Rendering;

namespace Learning.Blazor.Pages
{
 public sealed partial class Authentication
 {
 [Parameter] public string? Action { get; set; } = null!;

 private void LocalizedLogOutFragment(
 RenderTreeBuilder builder) =>
 ParagraphElementWithLocalizedContent(
 builder, Localizer, "ProcessingLogout");

 private void LocalizedLoggedOutFragment(
 RenderTreeBuilder builder) =>
 ParagraphElementWithLocalizedContent(
 builder, Localizer, "YouAreLoggedOut");

 private RenderFragment LocalizedLogInFailedFragment(
 string errorMessage) =>
 ParagraphElementWithLocalizedErrorContent(
 errorMessage, Localizer, "ErrorLoggingInFormat");

 private RenderFragment LocalizedLogOutFailedFragment(
 string errorMessage) =>
 ParagraphElementWithLocalizedErrorContent(
 errorMessage, Localizer, "ErrorLoggingOutFormat");

 private static void ParagraphElementWithLocalizedContent(
 RenderTreeBuilder builder,
 CoalescingStringLocalizer<Authentication> localizer,
 string resourceKey)
 {
 builder.OpenElement(0, "p");
 builder.AddContent(1, localizer[resourceKey]);
 builder.CloseElement();
 }

 private static RenderFragment ParagraphElementWithLocalizedErrorContent(
 string errorMessage,
 CoalescingStringLocalizer<Authentication> localizer,
 string resourceKey) =>

A Bit More on Blazor Authentication | 111

 builder =>
 {
 builder.OpenElement(0, "p");
 builder.AddContent(1, localizer[resourceKey, errorMessage]);
 builder.CloseElement();
 };
 }

The component uses the Rendering namespace to consume RenderTreeBuilder
and RenderFragment types.

The Authentication page has several states.

Each method either satisfies the RenderFragment delegate signature or returns a
RenderFragment type.

A localized message is rendered when the authentication flow state has failed to
log in.

The ParagraphElementWithLocalizedContent method creates a p element with
a localized message.

The ParagraphElementWithLocalizedErrorContent method differs by accept‐
ing a formattable error message.

The RenderFragment, RenderFragment<T>, and RenderTreeBuilder types were first
discussed in “Blazor navigation essentials” on page 36 and are part of the Microsoft
.AspNetCore.Components.Rendering namespace, while the Authentication page
component is in Learning.Blazor.Pages.

The Authentication page component is opaque in that it defines a string prop‐
erty named Action and binds it to the framework-provided RemoteAuthenticator
View.Action property of the same name. This component is also a partial class,
serving as the markup’s shadow with code-behind.

The LocalizedLogOutFragment method is private; however, the partial class
markup component has access to it. This method is assigned to the rendering
responsibility when the client browser has finished handling the log out authentica‐
tion flow. Its parameter is the RenderTreeBuilder builder instance. The builder is
immediately passed to the ParagraphElementWithLocalizedContent method along
with Localizer and a const string value of "ProcessingLogout". This pattern is
repeated for the LocalizedLoggedOutFragment method delegating to the same helper
function, changing only the third parameter to "YouAreLoggedOut". These two meth‐
ods are void returning and RenderTreeBuilder parameter accepting. This means
that they match the RenderFragment delegate expected signature.

112 | Chapter 4: Customizing the User Login Experience

For education, I’ll show a few more ways to customize using a slightly different
approach. Notice that LocalizedLogInFailedFragment is not void returning, nor
is it RenderTreeBuilder parameter accepting. Instead, this method returns a Render
Fragment and accepts a string. This is possible as there are two RenderFragment
delegates:

• delegate void RenderFragment(RenderTreeBuilder builder);•
• delegate RenderFragment RenderFragment<TValue>(TValue value);•

The ParagraphElementWithLocalizedContent method uses the RenderTreeBuilder
builder, CoalescingStringLocalizer<Authentication> localizer, and string
resourceKey parameters. Using the builder, an opening <p> HTML element is built.
Content is added given the value of the localizer[resourceKey] evaluation. Finally,
the closing </p> HTML element is built. This method is being used by the log out and
logged out authentication flow events:

• "ProcessingLogout" renders the “If you’re not changing the world, you’re stand‐•
ing still” message.

• "YouAreLoggedOut" renders the “Bye for now!” message.•

The ParagraphElementWithLocalizedErrorContent method is similar to the
ParagraphElementWithLocalizedContent method in that it defines identical
parameters, but it returns different things. In this case, the generic Render

Fragment<string> delegate type is inferred, even though the RenderFragment dele‐
gate type is explicitly returned. This method is being used by the log in failed and log
out failed authentication flow events:

• When login fails, display a formatted message of "There was an error trying•
to log you in: '{0}'".

• When logout fails, display a formatted message of "There was an error trying•
to log you out: '{0}'".

The {0} values within the message formats are used as placeholders for the raw and
untranslated error messages.

The Web.Client ConfigureServices Functionality
You should recall the common nomenclature of the top-level WebAssembly app entry
point, a C# top-level program. This was initially shown in Example 2-1 and covered
the ConfigureServices extension method. We didn’t discuss the specifics of the
client-side service registration. A majority of that work happens in the WebAssembly
HostBuilderExtensions.cs C# file:

A Bit More on Blazor Authentication | 113

namespace Learning.Blazor.Extensions;

internal static class WebAssemblyHostBuilderExtensions
{
 internal static WebAssemblyHostBuilder ConfigureServices(
 this WebAssemblyHostBuilder builder)
 {
 var (services, configuration) =
 (builder.Services, builder.Configuration);

 services.AddMemoryCache();
 services.AddScoped<ApiAccessAuthorizationMessageHandler>();
 services.Configure<WebApiOptions>(
 configuration.GetSection(nameof(WebApiOptions)));

 static WebApiOptions? GetWebApiOptions(
 IServiceProvider serviceProvider) =>
 serviceProvider.GetService<IOptions<WebApiOptions>>()
 ?.Value;

 var addHttpClient =
 static IHttpClientBuilder (
 IServiceCollection services, string httpClientName,
 Func<WebApiOptions?, string?> webApiOptionsUrlFactory) =>
 services.AddHttpClient(
 httpClientName, (serviceProvider, client) =>
 {
 var options = GetWebApiOptions(serviceProvider);
 var apiUrl = webApiOptionsUrlFactory(options);
 if (apiUrl is { Length: > 0 })
 client.BaseAddress = new Uri(apiUrl);

 var cultureService =
 serviceProvider.GetRequiredService<CultureService>();

 client.DefaultRequestHeaders.AcceptLanguage.ParseAdd(
 cultureService.CurrentCulture.TwoLetterISOLanguageName);
 })
 .AddHttpMessageHandler<ApiAccessAuthorizationMessageHandler>();

 _ = addHttpClient(
 services, HttpClientNames.ServerApi,
 options => options?.WebApiServerUrl);
 _ = addHttpClient(
 services, HttpClientNames.PwnedServerApi,
 options => options?.PwnedWebApiServerUrl);
 _ = addHttpClient(
 services, HttpClientNames.WebFunctionsApi,
 options => options?.WebFunctionsUrl ??
 builder.HostEnvironment.BaseAddress);

 services.AddScoped<WeatherFunctionsClientService>();

114 | Chapter 4: Customizing the User Login Experience

 services.AddScoped(
 sp => sp.GetRequiredService<IHttpClientFactory>()
 .CreateClient(HttpClientNames.ServerApi));
 services.AddLocalization();
 services.AddMsalAuthentication(
 options =>
 {
 configuration.Bind(
 "AzureAdB2C", options.ProviderOptions.Authentication);
 options.ProviderOptions.LoginMode = "redirect";
 var add = options.ProviderOptions.DefaultAccessTokenScopes.Add;

 add("openid");
 add("offline_access");
 add(AzureAuthenticationTenant.ScopeUrl);
 });
 services.AddOptions();
 services.AddAuthorizationCore();
 services.AddSingleton<SharedHubConnection>();
 services.AddSingleton<AppInMemoryState>();
 services.AddSingleton<CultureService>();
 services.AddSingleton(typeof(CoalescingStringLocalizer<>));
 services.AddScoped
 <IWeatherStringFormatterService, WeatherStringFormatterService>();
 services.AddScoped<GeoLocationService>();
 services.AddHttpClient<GeoLocationService>(client =>
 {
 var apiHost = "https://api.bigdatacloud.net";
 var reverseGeocodeClientRoute = "data/reverse-geocode-client";
 client.BaseAddress =
 new Uri($"{apiHost}/{reverseGeocodeClientRoute}");
 client.DefaultRequestHeaders.AcceptEncoding.ParseAdd("gzip");
 });
 services.AddJokeServices();
 services.AddLocalStorageServices();
 services.AddSpeechRecognitionServices();

 return builder;
 }
}

The (IServiceCollection services, IConfiguration configuration) tuple
is being used to capture the services and configuration as locals.

A static local function addHttpClient is defined.

IHttpClientFactory is being added as a singleton.

The geolocation API has its HttpClient configured.

A Bit More on Blazor Authentication | 115

The file-scoped namespace is Learning.Blazor.Extensions, which shares all exten‐
sion’s functionality for the client code. The extensions class is internal, and like all
extensions classes, it is required to be static. The ConfigureServices method is
named this way because it might seem familiar to ASP.NET Core developers who
were accustomed to startup conventions, but it doesn’t have to be named this way.
To allow for method chaining, this extension method returns the WebAssemblyHost
Builder object that it extends.

Declare and assign the services and configuration objects from the builder. Then
it’s off to the races as we add the scoped aforementioned ApiAccessAuthorization
MessageHandler as a service. The WebApiOptions instance is configured, essentially
binding them from the resolved configuration instance’s WebApiOptions object.
There is a static local function named GetWebApiOptions that returns a questionable
WebApiOptions object given an IServiceProvider instance.

To avoid duplicating code, addHttpClient is a static local function that encapsulates
the adding and configuring of an HTTP client. It returns an IHttpClientBuilder
instance given the services, an httpClientName, and a function that acts as a
factory. The function is named webApiOptionsUrlFactory, and it returns a nulla‐
ble string given the configured options object. The lambda expression delegates
to the AddHttpClient extension method on the IServiceCollection type. This
configures the HTTP client base address from the configured URL. It also sets
the "Accept-Language" default request header to the currently configured Culture
Service instance’s ISO 639-1 two-letter code. There are two calls to this addHttp
Client expression: setting up the Web API server endpoint and the “Have I Been
Pwned” server endpoint.

A few additional services are added, and the Microsoft Authentication Library
(MSAL) services are configured and bound to the "AzureAdB2C" section of the
configuration instance. LoginMode is assigned to "redirect", which causes the app
to redirect the user to Azure AD B2C to complete sign-in. Another example of the
improvements to lambda expressions is how we declare and assign a variable named
add, which delegates to the DefaultAccessTokenScopes.Add functionality on the
collection method. It expects a string and is void returning. The add variable is then
invoked three times, adding the "openid", "offline_access", and ScopeUrl scopes.
Many of the remaining services are then registered.

HttpClient is added and configured, which will be used when DI resolves the Geo
LocationService. The big data cloud, API host, and route are used as the base
address for the client. The additional dependencies are then registered, which
include the Joke Services and Local Storage packages. IJSInProcessRuntime is reg‐
istered as a single instance, resolved by a cast from IJSRuntime. This is possible

116 | Chapter 4: Customizing the User Login Experience

only with Blazor WebAssembly. This is discussed in much more detail in Chapter 7.
Finally, builder is returned, completing the fluent ConfigureServices API.

This single extension method is the code that is responsible for configuring the DI
of the client-side app. You will have noticed that the HTTP message handler was con‐
figured for the HttpClient instances that will forward the bearer tokens on behalf of
the client from ApiAccessAuthorizationMessageHandler. This is important, as not
all API endpoints require an authenticated user, but those that do will be accessible
only when correctly configured this way.

Native Speech Synthesis
You’ve seen how to register all the client-side services for DI and how to consume
registered services in components. In the previous chapter, you saw how the home
page renders its tiled content. If you recall, each tile had some markup that included
AdditiveSpeechComponent. While I showed you how to consume this component,
I didn’t yet expand upon how it works. Any component that attaches to Additive
SpeechComponent will be able to use a native speech synthesis service. Clicking on the
audio buttons, which are shown in Figure 4-2, will trigger the speech synthesis service
to speak the text of the tile.

Figure 4-2. Home page tiles

AdditiveSpeechComponent exposes a single Message parameter. The consuming
components reference this component and assign a message. Consider the Additive
SpeechComponent.razor markup file:

Native Speech Synthesis | 117

@inherits LocalizableComponentBase<AdditiveSpeechComponent>

<div class="is-top-right-overlay">
 <button class="button is-rounded is-theme-aware-button p-4 @_dynamicCSS"
 disabled=@_isSpeaking @onclick=OnSpeakButtonClickAsync>

 <i class="fas fa-volume-up"></i>

 </button>
</div>

AdditiveSpeechComponent inherits LocalizableComponentBase to use three com‐
mon services that are injected into the base class. The AppInMemoryState, Culture
Service, and IJSRuntime services are common enough to warrant this inheritance.

The markup is a div element with a descriptive class attribute, which overlays the
element in the top-righthand corner of the consuming component. The div element
is a parent to a rounded and theme-aware button with a bit of dynamic CSS. The
button itself is disabled when the _isSpeaking bit evaluates as true. This is the first
component markup we’re covering that shows Blazor event handling. When the user
clicks the button, the OnSpeakButtonClickAsync event handler is called.

You can specify event handlers for all valid DOM events. The syntax follows a
very specific pattern: @on{EventName}={EventHandler}. This syntax is applied as an
element attribute, where:

• {EventName} is the DOM event name•
• {EventHandler} is the name of the method that will handle the event•

For example, @onclick=OnSpeakButtonClickAsync assigns the OnSpeakButtonClick
Async event handler to the click event of the element; in other words, when the click
is fired, it calls OnSpeakButtonClickAsync.

The OnSpeakButtonClickAsync method is defined in the component shadow, and it
is Task returning. This means that in addition to synchronous event handlers, asyn‐
chronous event handlers are fully supported. With Blazor event handlers, changes
to the UI are automatically triggered, so you will not have to manually call State
HasChanged to signal rerendering. The AdditiveSpeechComponent.razor.cs C# file
looks like this:

namespace Learning.Blazor.Components
{
 public partial class AdditiveSpeechComponent
 {
 private bool _isSpeaking = false;
 private string _dynamicCSS
 {
 get

118 | Chapter 4: Customizing the User Login Experience

https://oreil.ly/ToPqA

 {
 return string.Join(" ", GetStyles()).Trim();

 IEnumerable<string> GetStyles()
 {
 if (string.IsNullOrWhiteSpace(Message))
 yield return "is-hidden";

 if (_isSpeaking)
 yield return "is-flashing";
 };
 }
 }

 [Parameter]
 public string? Message { get; set; } = null!;

 async Task OnSpeakButtonClickAsync()
 {
 if (Message is null or { Length: 0 })
 {
 return;
 }

 var (voice, voiceSpeed) = AppState.ClientVoicePreference;
 var bcp47Tag = Culture.CurrentCulture.Name;

 _isSpeaking = true;

 await JavaScript.SpeakMessageAsync(
 this,
 nameof(OnSpokenAsync),
 Message,
 voice,
 voiceSpeed,
 bcp47Tag);
 }

 [JSInvokable]
 public Task OnSpokenAsync(double elapsedTimeInMilliseconds) =>
 InvokeAsync(() =>
 {
 _isSpeaking = false;

 Logger.LogInformation(
 "Spoke utterance in {ElapsedTime} milliseconds",
 elapsedTimeInMilliseconds);

 StateHasChanged();
 });
 }
}

Native Speech Synthesis | 119

AdditiveSpeechComponent maintains several bits of component state.

The OnSpeakButtonClickAsync method conditionally speaks a message.

The OnSpokenAsync method is called after the message has been spoken.

The class has an _isSpeaking field that defaults to false. This value is used to deter‐
mine how to render <button>. The _dynamicCSS property only has a get accessor,
which makes it read-only. It determines the styles applied to <button>. The Message
property is a Parameter, which is what allows it to be assigned from consuming
components.

The event handler that was assigned to handle the button’s click event is the
OnSpeakButtonClickAsync method. When there is a meaningful value from Message,
this handler gets voice and voiceSpeed from the in-memory app state service, as
well as the Best Current Practices (BCP 47) language tag value from the current
culture. The _isSpeaking bit is set to true, and a call to JavaScript.SpeakMessage
Async is awaited given this component, the name of the OnSpokenAsync callback,
Message, voice, voiceSpeed, and bcp47Tag. This pattern might start looking a bit
familiar; as much or as little as your app needs to rely on native functionality from the
browser, it can use JavaScript interop.

The OnSpokenAsync method is declared as JSInvokable. Since this callback happens
asynchronously and at an undetermined time, the component couldn’t know when to
rerender, so you must tell it to with StateHasChanged.

Anytime you define a method that is JSInvokable that alters the
state of the component, you must call StateHasChanged to signal a
rerender.

The OnSpokenAsync handler is expressed as InvokeAsync, which executes the given
work item on the renders synchronization context. It sets _isSpeaking to false, logs
the total amount of time the message was spoken, and then notifies the component
that its state has changed.

The markup is minimal, and the code behind is clean but powerful. Let’s lean into the
JSRuntimeExtensions.cs C# file to see what SpeakMessageAsync looks like:

namespace Learning.Blazor.Extensions;

internal static partial class JSRuntimeExtensions
{
 internal static ValueTask SpeakMessageAsync<T>(
 this IJSRuntime jsRuntime,

120 | Chapter 4: Customizing the User Login Experience

https://oreil.ly/cZ57I

 T dotnetObj,
 string callbackMethodName,
 string message,
 string defaultVoice,
 double voiceSpeed,
 string lang) where T : class =>
 jsRuntime.InvokeVoidAsync(
 "app.speak",
 DotNetObjectReference.Create(dotnetObj),
 callbackMethodName, message, defaultVoice, voiceSpeed, lang);
}

Extending the IJSRuntime functionality with meaningful names makes me happy. I
find joy in these small victories, but it does make for a more enjoyable experience
when reading the code. Being able to read it as JavaScript.SpeakMessageAsync
is self-descriptive. This extension method delegates to the IJSRuntime.InvokeVoid
Async method, calling "app.speak" given DotNetObjectReference, the callback
method name, a message, voice, voice speed, and language. I could have called
InvokeVoidAsync directly from the component, but I prefer the descriptive method
name of the extension method. This is the pattern that I recommend, as it helps to
encapsulate the logic and it’s easier to consume from multiple call points. The Java‐
Script code that this extension method relies on is part of the wwwroot/js/app.js file:

const cancelPendingSpeech = () => {
 if (window.speechSynthesis
 && window.speechSynthesis.pending === true) {
 window.speechSynthesis.cancel();
 }
};

const speak = (dotnetObj, callbackMethodName, message,
 defaultVoice, voiceSpeed, lang) => {
 const utterance = new SpeechSynthesisUtterance(message);
 utterance.onend = e => {
 if (dotnetObj) {
 dotnetObj.invokeMethodAsync(callbackMethodName, e.elapsedTime)
 }
 };

 const voices = window.speechSynthesis.getVoices();
 try {
 utterance.voice =
 !!defaultVoice && defaultVoice !== 'Auto'
 ? voices.find(v => v.name === defaultVoice)
 : voices.find(v => !!lang &&
 v.lang.startsWith(lang)) || voices[0];
 } catch { }
 utterance.volume = 1;
 utterance.rate = voiceSpeed || 1;

Native Speech Synthesis | 121

 window.speechSynthesis.speak(utterance);
};

window.app = Object.assign({}, window.app, {
 speak,
 // omitted for brevity...
});

// Prevent the client from speaking when the user closes the tab or window.
window.addEventListener('beforeunload', _ => {
 cancelPendingSpeech();
});

As a safety net to avoid the browser from speaking when the user closes the tab
or window, the cancelPendingSpeech method is defined.

The speak function creates and prepares an utterance instance for usage.

The utterance.voice property is set to the voices array, filtered by the default
Voice and lang parameters.

The utterance is passed to the speechSynthesis.speak method.

The beforeunload event handler is defined to cancel any pending speech.

The cancelPendingSpeech function checks if the window.speechSynthesis object
is truthy (in this case, meaning it’s not null or undefined). If there are any pend‐
ing utterances in the queue, a call to window.speechSynthesis.cancel() is made,
removing all utterances from the queue.

The "app.speak" method is defined as the function named speak. It has six parame‐
ters, which feels like too many. You could choose to parameterize this with a single
top-level object if you’d like, but that would require a new model and additional
serialization. I’d probably limit a parameter list to no more than six, but as with
everything in programming, there are trade-offs. The speak method body starts by
instantiating a SpeechSynthesisUtterance given the message. This object exposes
an end/onend event that is fired when the utterance has finished being spoken. An
inline event handler is assigned, which relies on the given dotnetObj instance and
callbackMethodName. When the utterance is done being spoken, the event fires and
calls back onto the calling component’s given method.

An attempt to assign the desired voice to speak the utterance is made. This can be
problematic and error-prone—as such, its attempt is fragile and protected with a
try/catch. If it works, great, and if not, it’s not a big deal as the browser will select the
default voice. The volume is set to 1, and the speed at which the utterance is spoken is
set as well.

122 | Chapter 4: Customizing the User Login Experience

With an utterance instance prepared, a call to window.speechSynthesis

.speak(utterance) is made. This will enqueue the utterance into the native speech
synthesis queue. When utterance reaches the end of the queue, it is spoken. The
"app.speak" name comes from how the speak function const is added to either a
new instance of app or the existing one.

If a long utterance is being spoken, and the user closes the app’s browser tab or
window but leaves the browser open, the utterance will continue to be spoken. To
avoid this behavior, we’ll call cancelPendingSpeech when the window is unloaded.

AdditiveSpeechComponent could be bundled into a separate Razor component
project and distributed to consuming apps. That approach is beneficial because it
exposes functionality and shares it with consumers. All of the functionality of this
component is encapsulated and could benefit from being shared via NuGet. At the
time of writing, the component remained as part of the Web.Client project, but that’s
not to say that this couldn’t easily evolve in complexity or add new functionality.
Once on NuGet, it could be used by other .NET developers who consume open
source projects.

The Learning Blazor sample app demonstrates how to create Razor projects and
consume them from the Blazor web client. The Web.Client project depends on the
Web.TwitterComponents Razor class library. The Web.TwitterComponents project
encapsulates a few Twitter-specific components. The Web.Client consumes these
components and exposes them to the Blazor web client.

Sharing and Consuming Custom Components
To consume a component, you reference it from a consuming component’s markup.
Blazor provides many components out of the box, from layouts to navigation, from
standard form controls to error boundaries, from page titles to head outlets, and so
on. See Microsoft’s “ASP.NET Core Built-in Razor Components” documentation for a
listing of the available components.

When the built-in components are not enough, you can turn to custom components.
There are many other vendor-provided components. Additionally, there is a mas‐
sive open source community that builds component libraries as well. Chances are
you’ll find what you need as a developer when building Blazor apps from all the
vendor-provided component libraries out there. Consider the following list of vendor
resources:

• Telerik: UI for Blazor•
• DevExpress: Blazor UI components•
• Syncfusion: Blazor components library•

Sharing and Consuming Custom Components | 123

https://oreil.ly/2RhYY
https://oreil.ly/yvL4B
https://oreil.ly/QeFJA
https://oreil.ly/YLO7B

• Radzen: Blazor components•
• Infragistics: Blazor UI components•
• GrapeCity: Blazor UI controls for web apps•
• jQWidgets: Smart.Blazor UI component library•
• MudBlazor: Blazor component library based on material design•

There is a community-curated list on GitHub known as Awesome Blazor, which is
another great resource. Sometimes, you may require functionality that isn’t available
from the framework, from vendors, or even from the community at large. When this
happens, you can write your own component libraries.

Since Blazor is built atop Razor, all of the components are Razor components. They’re
easily identifiable by their .razor file extension.

Chrome: The Overloaded Term
With GUI apps, there is an old term that’s been overloaded through the years. The
term chrome refers to an element of the UI that displays the various commands or
capabilities available to the user. For example, the chrome of the Learning Blazor
sample app is the top bar. This contains the app’s top-level navigation, the theme
display icon, and the buttons for various popup modal components such as the
notification toggle, task list toggle, and the log in/out button. This was shown in
Figures 2-2 and 2-3 from Chapter 2. When I refer to chrome, I’m not talking about
the web browser. We’ve already discussed navigation and routing a bit, so let’s focus
on modal modularity.

Modal Modularity and Blazor Component Hierarchies
Most apps need to interact with the user and prompt them for input. The app’s
navigation is a user experience, and one example of user input is the user clicks a link
to a route they want to visit, then the app takes an action. Sometimes we’ll need to
prompt the user to use the keyboard instead of the mouse. The questions we ask users
vary primarily by domain, for example, “What’s your email address?” or “What’s
your message to send?” Answers vary by control type, meaning free-form text line
or text area, or a checkbox, select list, or button. All of this is fully supported with
Blazor. You can subscribe to native HTML element events and handle them in Razor
C# component logic. There are native forms of integration and modal/input binding
validation, templating, and component hierarchies.

One such control is a custom control named ModalComponent. This component is
going to be used throughout the app for various use cases. It will have an inherited
component to exemplify component subclass patterns, which are common in C#

124 | Chapter 4: Customizing the User Login Experience

https://oreil.ly/hf29O
https://oreil.ly/IyJ0D
https://oreil.ly/6ysQy
https://oreil.ly/SX6nA
https://oreil.ly/BBGUy
https://oreil.ly/sTodG

but were underutilized as a programming pattern for JavaScript SPAs. Consider the
ModalComponent.razor markup file:

<div class="modal has-text-left @_isActiveClass">
 <div class="modal-background" @onclick=@CancelAsync></div>
 <div class="modal-card">
 <header class="modal-card-head">
 <p class="modal-card-title">
 @TitleContent
 </p>
 <button class="delete" aria-label="close" @onclick=@CancelAsync>
 </button>
 </header>

 <section class="modal-card-body">
 @BodyContent
 </section>

 <footer class="modal-card-foot is-justify-content-flex-end">
 <div>
 @ButtonContent
 </div>
 </footer>
 </div>
</div>

The outermost element is a div with the modal class.

The title is represented as a header element with the modal-card-title class.

The body is a section with the modal-card-body class.

The footer is styled with the modal-card-foot class.

The HTML is a modal styled div with an _isActiveClass value bound to the modal’s
class attribute, meaning that the state of the modal, whether it is active (shown) or
not, is dependent on a component variable. It has a background style that applies an
overlay, making this element pop up as a modal dialog displayed to the user. The
background div element itself handles user clicks by calling CancelAsync and covers
the entire page.

The HTML is semantically accurate, representing an industry-standardized three-
part header/body/footer layout. The first template placeholder is the @TitleContent.
This is a required RenderFragment that allows for the consuming component to
provide custom title markup. The header also contains a button that will call Cancel
Async when clicked.

Chrome: The Overloaded Term | 125

BodyContent is styled appropriately as a modal’s body, which is a section HTML
element and semantically positioned beneath the header and above the footer.

The modal footer contains the required ButtonContent markup. Collectively, this
modal represents a common dialog component where consumers can plug in their
customized markup and corresponding prompts.

The component shadow defines the component’s parameter properties, events, com‐
ponent state, and functionality. Consider the ModalComponent.razor.cs C# file:

namespace Learning.Blazor.Components;

public partial class ModalComponent
{
 private string _isActiveClass => IsActive ? "is-active" : "";

 [Parameter]
 public EventCallback<DismissalReason> Dismissed { get; set; }

 [Parameter]
 public bool IsActive { get; set; }

 [Parameter, EditorRequired]
 public RenderFragment TitleContent { get; set; } = null!;

 [Parameter, EditorRequired]
 public RenderFragment BodyContent { get; set; } = null!;

 [Parameter, EditorRequired]
 public RenderFragment ButtonContent { get; set; } = null!;

 /// <summary>
 /// Gets the reason that the <see cref="ModalComponent"/> was dismissed.
 /// </summary>
 public DismissalReason Reason { get; private set; }

 /// <summary>
 /// Sets the <see cref="ModalComponent"/> instance's
 /// <see cref="IsActive"/> value to <c>true</c> and
 /// <see cref="Reason"/> value as <c>default</c>.
 /// It then signals for a change of state; this rerender will
 /// show the modal.
 /// </summary>
 public Task ShowAsync() =>
 InvokeAsync(() => (IsActive, Reason) = (true, default));

 /// <summary>
 /// Sets the <see cref="ModalComponent"/> instance's
 /// <see cref="IsActive"/> value to <c>false</c> and
 /// <see cref="Reason"/> value as given <paramref name="reason"/>
 /// value. It then signals for a change of state;
 /// this rerender will cause the modal to be dismissed.

126 | Chapter 4: Customizing the User Login Experience

 /// </summary>
 public Task DismissAsync(DismissalReason reason) =>
 InvokeAsync(async () =>
 {
 (IsActive, Reason) = (false, reason);
 if (Dismissed.HasDelegate)
 {
 await Dismissed.InvokeAsync(Reason);
 }
 });

 /// <summary>
 /// Dismisses the shown modal; the <see cref="Reason"/>
 /// will be set to <see cref="DismissalReason.Confirmed"/>.
 /// </summary>
 public Task ConfirmAsync() => DismissAsync(DismissalReason.Confirmed);

 /// <summary>
 /// Dismisses the shown modal; the <see cref="Reason"/>
 /// will be set to <see cref="DismissalReason.Cancelled"/>.
 /// </summary>
 public Task CancelAsync() => DismissAsync(DismissalReason.Cancelled);

 /// <summary>
 /// Dismisses the shown modal; the <see cref="Reason"/>
 /// will be set to <see cref="DismissalReason.Verified"/>.
 /// </summary>
 public Task VerifyAsync() => DismissAsync(DismissalReason.Verified);
}

public enum DismissalReason
{
 Unknown, Confirmed, Cancelled, Verified
};

The ModalComponent class is part of the Learning.Blazor.Components

namespace.

Several properties together represent examples of required component parame‐
ters, events, templates, and component state values.

As for the functionality and modularity, the modal component can be shown and
just as easily dismissed.

The enum DismissalReason type is defined within the same file-scoped
namespace.

Chrome: The Overloaded Term | 127

In Blazor, when you define a property that is used as a Parameter
and you want that parameter to be required, you can use the
framework-provided EditorRequired attribute. This specifies that
the component parameter is required to be provided by the user
when authoring it in the editor. If a value for this parameter is not
provided, editors or build tools may provide warnings prompting
the user to specify a value.

The ModalComponent class defines several properties:

_isActiveClass

A private string that serves as a computed property, which evaluates the
IsActive property and returns "is-active" when true. This was bound to the
modal’s markup, where the div’s class attribute had some static classes and a
dynamically bound value.

Dismissed

A component parameter, which is of type EventCallback<DismissalReason>.
An event callback accepts delegate assignments from consumers, where events
flow from this component to interested recipients.

IsActive

A bool value, which represents the current state of whether the modal is actively
being displayed to the user. This parameter is not required and is typically set
implicitly from calls to DismissAsync.

TitleContent

A named RenderFragment type representing the template placeholder for the
header title.

BodyContent

A named RenderFragment type representing the template placeholder for the
body content.

ButtonContent

A named RenderFragment type representing the template placeholder for the
footer controls.

Reason

The reason for the dismissal of the modal is “unknown,” “confirmed,” “canceled,”
or “verified.”

ModalComponent exposes modularity as the functionality is templated, and consumers
have hooks into the component. Consumers can call any of these public Task
returning asynchronous operational methods:

128 | Chapter 4: Customizing the User Login Experience

ShowAsync

Immediately shows the modal to the user. This method is expressed as a call to
InvokeAsync given a lambda expression that sets the values of IsActive to true
and assigns default to Reason (or DismissalReason.Unknown). Calling State
HasChanged is unnecessary at this point. Asynchronous operational support will
automatically rerender the UI components implicitly as needed.

DismissAsync

Given a dismissal reason, immediately dismisses the modal. The IsActive state is
set to false, which will effectively hide the component from the user.

ConfirmAsync

Sets the dismissal reason as Confirmed and delegates to DismissAsync.

CancelAsync

Sets the dismissal reason as Cancelled and delegates to DismissAsync.

VerifyAsync

Sets the dismissal reason as Verified and delegates to DismissAsync.

The enum DismissalReason type defines four states: Unknown (which is the default),
Confirmed, Cancelled (can occur implicitly from the user clicking outside the
modal), and Verified. While I will usually place every type definition in its file, I
choose to keep the enum DismissalReason within the same file. To me, these are
logically cohesive and belong together.

Exploring Blazor Event Binding
ModalComponent is consumed by VerificationModalComponent. Let’s take a look at
how this is achieved in the VerificationModalComponent.razor markup file:

@inherits LocalizableComponentBase<VerificationModalComponent>

<ModalComponent @ref="_modal" Dismissed=@OnDismissed>
 <TitleContent>

 <i class="fas fa-robot"></i>

 @Localizer["AreYouHuman"]
 </TitleContent>
 <BodyContent>
 <form>
 <div class="field">
 <label class="label">@_math.HumanizeQuestion()</label>
 <div class="field-body">
 <div class="field">
 <p class="control is-expanded has-icons-left">
 @{

Chrome: The Overloaded Term | 129

 var inputValidityClass =
 _answeredCorrectly is false
 ? " invalid"
 : "";

 var inputClasses = $"input{inputValidityClass}";
 }
 <input @bind="_attemptedAnswer"
 class=@inputClasses
 type="text"
 placeholder="@Localizer["AnswerFormat",
 _math.GetQuestion()]" />

 <i class="fas fa-info-circle"></i>

 </p>
 </div>
 </div>
 </div>
 </form>
 </BodyContent>
 <ButtonContent>
 <button class="button is-info is-large is-pulled-left" @onclick=Refresh>

 <i class="fas fa-redo"></i>

 @Localizer["Refresh"]
 </button>
 <button class="button is-success is-large" @onclick=AttemptToVerify>

 <i class="fas fa-check"></i>

 @Localizer["Verify"]
 </button>
 </ButtonContent>
</ModalComponent>

The _modal reference wires the OnDismissed event handler.

TitleContent renders a localized prompt message and a robot icon.

BodyContent renders a form with a single input field.

The _attemptedAnswer property is bound to the input field’s value attribute.

The buttons are rendered in the ButtonContent template.

The VerificationModalComponent markup relies on ModalComponent, and it cap‐
tures a reference to the modal using the @ref="_modal" syntax. Blazor will
automatically assign the _modal field from the instance value of the referenced

130 | Chapter 4: Customizing the User Login Experience

component markup. Internal to VerificationModalComponent, the dependent Modal
Component.Dismissed event is handled by the OnDismissed handler. In other words,
ModalComponent.Dismissed is a required parameter, and it’s an event that the com‐
ponent will fire. The VerificationModalComponent.OnDismissed event handler is
assigned to handle it. This is custom event binding, where the consuming component
handles the dependent component’s exposed parameterized event.

The verification modal’s title content (TitleContent) prompts the user with an “Are
you human?” message.

The BodyContent markup contains a native HTML form element. Within this
markup is a simple label and corresponding text input element. The label splats
a question into the markup from the evaluated _math.GetQuestion() invocation
(more on the _math object in a bit). The attempted answer input element has
dynamic CSS classes bound to it based on whether the question was correctly
answered.

The input element has its value bound to the _attemptedAnswer variable. It also has
a placeholder bound from a localized answer format given the math question, which
will serve as a clue to the user about what’s expected.

The ButtonContent markup has two buttons, one for refreshing the question (via
the Refresh method) and the other for attempting to verify the answer (via the
AttemptToVerify method). This is an example of native event binding, where the
button elements have their click events bound to the corresponding event handlers.

ModalComponent itself is a base modal, while VerificationModalComponent uses the
base modal and employs a very specific verification prompt. VerificationModal
Component will render as shown in Figure 4-3.

Figure 4-3. An example rendering of the VerificationModalComponent

Chrome: The Overloaded Term | 131

The component shadow for VerificationModalComponent resides in the Verification
ModalComponent.cs file:

namespace Learning.Blazor.Components
{
 public sealed partial class VerificationModalComponent
 {
 private AreYouHumanMath _math = AreYouHumanMath.CreateNew();
 private ModalComponent _modal = null!;
 private bool? _answeredCorrectly = null!;
 private string? _attemptedAnswer = null!;
 private object? _state = null;

 [Parameter, EditorRequired]
 public EventCallback<(bool IsVerified, object? State)>
 OnVerificationAttempted
 {
 get;
 set;
 }

 public Task PromptAsync(object? state = null)
 {
 _state = state;
 return _modal.ShowAsync();
 }

 private void Refresh() =>
 (_math, _attemptedAnswer) = (AreYouHumanMath.CreateNew(), null);

 private async Task OnDismissed(DismissalReason reason)
 {
 if (OnVerificationAttempted.HasDelegate)
 {
 await OnVerificationAttempted.InvokeAsync(
 (reason is DismissalReason.Verified, _state));
 }
 }

 private async Task AttemptToVerify()
 {
 if (int.TryParse(_attemptedAnswer, out var attemptedAnswer))
 {
 _answeredCorrectly = _math.IsCorrect(attemptedAnswer);
 if (_answeredCorrectly is true)
 {
 await _modal.DismissAsync(DismissalReason.Verified);
 }
 }
 else
 {
 _answeredCorrectly = false;

132 | Chapter 4: Customizing the User Login Experience

 }
 }
 }
}

VerificationModalComponent wraps ModalComponent to add a verification layer.

An event callback exposes whether the verification attempt was successful.

The prompt method delegates to the ModalComponent.ShowAsync method.

The Refresh method resets the _math and _attemptedAnswer fields.

The OnDismissed event handler is invoked when the modal is dismissed.

The AttemptToVerify method dismisses the modal if the answer is correct.

The VerificationModalComponent class defines the following fields:

_math

The math object is of type AreYouHumanMath and is assigned from the AreYou
HumanMath.CreateNew() factory method. This is a custom type that helps to
represent a simple mathematical problem that a human could likely figure out in
their head.

_modal

The field representing the ModalComponent instance from the corresponding
markup. Methods will be called on this instance, such as ShowAsync to display the
modal to the user.

_answeredCorrectly

The three-state bool is used to determine if the user answered the question
correctly.

_attemptedAnswer

The nullable string bound to the input element, used to store the user-entered
value.

_state

A state object that represents an opaque value, stored on behalf of the con‐
sumer. When the consuming component calls PromptAsync, if they pass state,
it’s assigned to the _state variable then given back to the caller when the
OnVerificationAttempted event callback is invoked.

OnVerificationAttempted is a required parameter. The callback signature passes a
tuple object, where its first value represents whether the verification attempt was

Chrome: The Overloaded Term | 133

successful. This is true when the user correctly entered the correct answer; otherwise
it’s false. The second value is an optional state object.

The PromptAsync method is used to display the modal dialog and accepts an optional
state object.

The Refresh method is bound to the refresh button and is called to rerandomize
the question being asked. The AreYouHumanMath.CreateNew() factory method is
reassigned to the _math field, and _attemptedAnswer is set to null.

The OnDismissed method is the handler for the ModalComponent.Dismissed event
callback. When the base modal is dismissed, it will have DismissalReason. With
the reason and when OnVerificationAttempted has a delegate, it’s invoked passing
whether it’s verified and any state that was held on to when prompted.

The AttemptToVerify method is bound to the verify button. When called it will
attempt to parse _attemptedAnswer as an int and ask the _math object if the answer
is correct. When true, _modal is dismissed as Verified. This will indirectly call
Dismissed.

I bet you’re wondering what the AreYouHumanMath object looks like—it sure was fun
writing this cute little object. Take a look at the AreYouHumanMath.cs C# file:

namespace Learning.Blazor.Models;

public readonly record struct AreYouHumanMath(
 byte LeftOperand,
 byte RightOperand,
 MathOperator Operator = MathOperator.Addition)
{
 private static readonly Random s_random = Random.Shared;

 /// <summary>
 /// Determines if the given <paramref name="guess"/> value is correct.
 /// </summary>
 /// <param name="guess">The value being evaluated for correctness.</param>
 /// <returns>
 /// <c>true</c> when the given <paramref name="guess"/> is correct,
 /// otherwise <c>false</c>.
 /// </returns>
 /// <exception cref="ArgumentException">
 /// An <see cref="ArgumentException"/> is thrown when
 /// the current <see cref="Operator"/> value is not defined.
 /// </exception>
 public bool IsCorrect(int guess) => guess == Operator switch
 {
 MathOperator.Addition => LeftOperand + RightOperand,
 MathOperator.Subtraction => LeftOperand - RightOperand,
 MathOperator.Multiplication => LeftOperand * RightOperand,

134 | Chapter 4: Customizing the User Login Experience

 _ => throw new ArgumentException(
 $"The operator is not supported: {Operator}")
 };

 /// <summary>
 /// The string representation of the <see cref="AreYouHumanMath"/> instance.
 /// <code language="cs">
 /// <![CDATA[
 /// var math = new AreYouHumanMath(7, 3);
 /// math.ToString(); // "7 + 3 ="
 ///]]>
 /// </code>
 /// </summary>
 /// <exception cref="ArgumentException">
 /// An <see cref="ArgumentException"/> is thrown when
 /// the current <see cref="Operator"/> value is not defined.
 /// </exception>
 public override string ToString()
 {
 var operatorStr = Operator switch
 {
 MathOperator.Addition => "+",
 MathOperator.Subtraction => "-",
 MathOperator.Multiplication => "*",

 _ => throw new ArgumentException(
 $"The operator is not supported: {Operator}")
 };

 return $"{LeftOperand} {operatorStr} {RightOperand} =";
 }

 public string GetQuestion() => $"{this} ?";

 public static AreYouHumanMath CreateNew(
 MathOperator? mathOperator = null)
 {
 var mathOp =
 mathOperator.GetValueOrDefault(RandomOperator());

 var (left, right) = mathOp switch
 {
 MathOperator.Addition => (Next(), Next()),
 MathOperator.Subtraction => (Next(120), Next(120)),
 _ => (Next(30), Next(30)),
 };

 (left, right) = (Math.Max(left, right), Math.Min(left, right));

 return new AreYouHumanMath(
 (byte)left,
 (byte)right,

Chrome: The Overloaded Term | 135

 mathOp);

 static MathOperator RandomOperator()
 {
 var values = Enum.GetValues<MathOperator>();
 return values[s_random.Next(values.Length)];
 };

 static int Next(byte? maxValue = null) =>
 s_random.Next(1, maxValue ?? byte.MaxValue);
 }
}

public enum MathOperator { Addition, Subtraction, Multiplication };

AreYouHumanMath is a positional record that defines a simple math problem.

The ability to test whether a guess is the correct answer is expressed by the
IsCorrect method.

The ToString method is used to display the math problem.

The CreateNew method is used to create a new random math problem.

The MathOperator enum defines whether a problem is addition, subtraction, or
multiplication.

The AreYouHumanMath object is a readonly record struct. As such, it’s immutable
but allows for with expressions, which creates a clone. It’s a positional record, mean‐
ing it can be instantiated only using the required parameter constructor. A left and
right operand value is required, but the math operator is optional and defaults to
addition.

Random.Shared was introduced with .NET 6 and is used to assign the static
readonly Random instance.

The IsCorrect method accepts a guess. This method will return true only when the
given guess equals the evaluated math operation of the left and right operand values.
For example, new AreYouHumanMath(7, 3).IsCorrect(10) would evaluate as true
because seven plus three equals ten. This method is expressed as a switch expression
on the Operator. Each operator case arm is expressed as the corresponding math
operation.

The ToString and GetQuestion methods return the mathematical representation
of the applied operator and two operands. For example, new AreYouHumanMath

(7, 3).ToString() would evaluate as "7 + 3 =", whereas new AreYouHumanMath
(7, 3).GetQuestion() would be "7 + 3 = ?".

136 | Chapter 4: Customizing the User Login Experience

The CreateNew method relies heavily on the Random class to help ensure that each
time it’s invoked a new question is asked. When the optional mathOperator is
provided, it’s used; otherwise, a random one is determined. With an operator, the
operands are randomly determined; the maximum number is the left operand, and
the minimum is the right.

As for the enum MathOperator, I intentionally decided to avoid division. With the
use of random numbers, it would have been a bit more complex, with concerns of
dividing by 0 and precision. Instead, I was hoping for math that you could more than
likely do in your head.

VerificationModalComponent is used as a spam blocker on the Contact.razor page,
as we’ll discuss in detail in Chapter 8. ModalComponent is also used by Audio
DescriptionComponent and LanguageSelectionComponent. These two components
are immediately to the right of ThemeIndicatorComponent, discussed in “Native
theme awareness” on page 53.

Summary
You learned a lot more about how extensive and configurable Blazor app develop‐
ment is. You have a much better understanding of how to authenticate a user in the
context of a Blazor WebAssembly application. I showed you a familiar web client
startup configuration pattern where all the client-side services are registered. We
customized the authorization UX. We explored the implementation of browser native
speech synthesis. Finally, we read all the markup and C# code for the chrome within
the app’s header and modal dialog hierarchical capabilities. We now have a much
better understanding of Blazor event management, firing, and consuming.

In the next chapter, I’m going to show you a pattern for localizing the app in 40 dif‐
ferent languages. I’ll show you how we use an entirely free GitHub Action combined
with Azure Cognitive Services to machine translate resource files on our behalf. You’ll
learn exactly how to implement localization using the framework-provided IString
Localizer<T> type along with static resource files. You’ll learn various formatting
details as well.

Summary | 137

CHAPTER 5

Localizing the App

In this chapter, I’m going to show you how to localize Blazor WebAssembly apps.
Using the Learning Blazor App as an example, I’ll show you how an app can be
automatically localized into dozens of languages. You’ll see how Blazor WebAssembly
recognizes static resource files for the client browser’s corresponding language. You
will also learn how to consume the framework-provided IStringLocalizer<T> inter‐
face type. Additionally, I’ll show you one possible way to machine translate static files
at rest with a GitHub Action using the Azure Cognitive Services Translator.

We live in a global society, and an application that speaks to one group of people
is a disappointment. Not only will this dramatically affect the UX for those who
do not speak the app’s language, but if the app contributes to an online shopping
experience, for example, it will have a detrimental effect on sales as well. This is where
localization comes in.

What Is Localization?
Localization is the act of translating static resources, such as those found in resource
files, into a specific language that an app plans to support. When your app supports
many languages, it will have various resource files for each supported locale. In .NET,
localization maintains locale-specific resource files in an XML format with the .resx
file extension.

Localization is not the same thing as globalization. Globalization is
when you code your app in a way that makes it easy to localize. For
an overview of globalization, see Microsoft’s “Globalization” .NET
documentation.

139

https://oreil.ly/4RTN0
https://oreil.ly/cRRVw
https://oreil.ly/cRRVw

The Learning Blazor app supports roughly 40 languages. Supporting these languages
is possible with the help of AI. As an English-speaking developer, I write my resource
files in English. This means the resources filenames end with .en.resx and the other
supported locales are machine-translated as an automated pull request. You’ll learn
how you can use this functionality in your apps later in this chapter.

As part of .NET, Blazor WebAssembly can dynamically determine which translated
version of the file to pull resources from. The browser will determine the language it
is using, and this information is available on the Web.Client app. Using the appropri‐
ate resource file, the app will render the correct content, following various numerical
and date formatting rules. To support an app’s many languages is to localize it. For
more information about localization in .NET, see Microsoft’s “Localization in .NET”
documentation.

Localizing an app using only machine-translated text is not ideal.
Instead, developers should hire professional translators who can
help maintain post-machine-translated files. This approach yields
more reliable translations. They’re not free, but you get what you
pay for. Machine translations are not always accurate, but they
strive to be natural sounding and can accommodate simple user
needs for limited text.

Localization is largely accomplished by using the app’s resource files. Resource (.resx)
files have their language encoded as a subextension .{lang-id}.resx, where the
{lang-id} placeholder is the browser’s specified language. The app exposes the
language configuration through the LanguageSelectionComponent, which uses
the ModalComponent to prompt the user to select from a list of languages that the app
supports. These languages are accessible to the app through an "api/cultures/all"
endpoint.

The Localization Process
Let’s prepare to localize our Learning Blazor sample app. To localize any Blazor
WebAssembly app, you’ll need the following:

• A client reference to the Microsoft.Extensions.Localization NuGet package•
• The ability to call AddLocalization() when registering services for DI•
• The ability to update culture based on user preferences and at app startup, as•

shown in “Detecting Client Culture at Startup” on page 34
• Resource files available to the Web.Client project•

140 | Chapter 5: Localizing the App

https://oreil.ly/Nm2vS
https://oreil.ly/Nm2vS

• IStringLocalizer<T> instances injected into components where localization is•
used

• An opportunity to call upon the localizer instances through their indexer method•
APIs

Blazor relies on CultureInfo.DefaultThreadCurrentCulture and CultureInfo

.DefaultThreadCurrentUICulture values to determine which resource file to use.

Let’s take a moment to understand how this process comes together. The Blazor
app needs to register the localization services. When the Web.Client project starts,
all services it relies on are registered as being discoverable through the framework-
provided DI service provider. Each client app instance makes use of the internal
HTTP clients and business logic services, with one, in particular, coming from
the Microsoft.Extensions.Localization NuGet package. This package contains
the services required to use localization. Recall from “The Web.Client ConfigureSer‐
vices Functionality” on page 113 that when setting up IServiceCollection, we made
a call to AddLocalization(). This method, from the Localization NuGet package,
adds the IStringLocalizer<T> service types to the client app’s DI container.

With the IStringLocalizer<T> type, a component can use the resources within the
translation files. Each Blazor component potentially has many resource files that
correspond to it. An instance of IStringLocalizer<T> corresponds to a single type
of T, where T is any type that might have resources.

You can use a shared object (SharedResource) that contains resources with these
common values. When you’re using IStringLocalizer<T> and IStringLocalizer
<SharedResource>, it becomes redundant to inject both of these types over and over
again. To solve this redundancy, a custom CoalescingStringLocalizer<T> service
exists to coalesce these multiple localizer types, favoring the type of T and coalescing
to the SharedResource type when a value is not found. Examples of common text
would be the text of command-centric buttons on the UI, like “Okay” or “Cancel.”
This approach could be used in other Blazor apps, or any localized .NET app, for that
matter. Consider the following CoalescingStringLocalizer.cs C# file:

namespace Learning.Blazor.Localization;

public sealed class CoalescingStringLocalizer<T>
{
 private readonly IStringLocalizer<T> _localizer = null!;
 private readonly IStringLocalizer<SharedResource> _sharedLocalizer = null!;

 public CoalescingStringLocalizer(
 IStringLocalizer<T> localizer,
 IStringLocalizer<SharedResource> sharedLocalizer) =>
 (_localizer, _sharedLocalizer) = (localizer, sharedLocalizer);

The Localization Process | 141

https://oreil.ly/4olfW

 /// <summary>
 /// Gets the localized content for the current sub-component,
 /// relying on the contextually appropriate
 /// <see cref="IStringLocalizer{T}"/> implementation.
 /// </summary>
 internal LocalizedString this[string name]
 => _localizer[name]
 ?? _sharedLocalizer[name]
 ?? new(name, name, false);

 /// <summary>
 /// Gets the localized content for the current sub-component,
 /// relying on the contextually appropriate
 /// <see cref="IStringLocalizer{T}"/> implementation.
 /// </summary>
 internal LocalizedString this[string name, params object[] arguments]
 => _localizer[name, arguments]
 ?? _sharedLocalizer[name, arguments]
 ?? new(name, name, false);
}

The CoalescingStringLocalizer<T> object relies on two fields:

• _localizer: The localizer for the T type, where T is a component•
• _sharedLocalizer: The localizer for the SharedResource type•

The constructor requires both localizer instances, and they’re assigned to the
class-scoped fields.

The first of two indexers accepts the name of the resource and coalesces on both
localizer instances. When not found, the given name is returned.

The second indexer accepts the name of the resource and the arguments. It
too coalesces on both localizer instances and returns the given name when no
resource is found.

CoalescingStringLocalizer<T> is used throughout the Web.Client project of our
Learning Blazor app and is injected into LocalizableComponentBase<T>. Compo‐
nents that inherit from the LocalizableComponentBase<T> type will have access
to the Localizer property. LocalizableComponentBase<T> is a descendant of the
framework-provided ComponentBase class. LanguageSelectionComponent<T> pro‐
vides a great example for binding to Localizer, and this component is responsible
for exposing the client language configuration. In the next section, we’ll explore how
this component binds localized content and lets the user choose the app’s language.

142 | Chapter 5: Localizing the App

The Language Selection Component
While exposing the ability for the user to select the app’s language isn’t specifically
part of the localization process, it’s an important feature to provide. When localizing
apps, you should be mindful to include such functionality.

The language selection component prompts the user for their desired language when
the user selects the Language top-level navigation button. Its markup introduces a
new framework-provided component used for handling errors, the ErrorBoundary
component. Whenever you write code that doesn’t handle errors, for example, poten‐
tially errant code that’s not wrapped in a try/catch block, that code has the potential
to negatively impact the component’s ability to render properly. As such, as an
alternative to writing try/catch, you could handle errors by displaying error-specific
markup. The ErrorBoundary component allows consumers to template both Child
Content for successful logic and ErrorContent when an error is thrown. This is
useful for conditionally rendering content even if the component encounters an error.
For example, if the endpoint that serves the app’s supported languages is unavailable,
the ErrorBoundary component can render a disabled button.

Assuming no errors are present, the modal dialog acts as a user prompt. When
LanguageSelectionComponent is displayed, clicking its button will show the modal
dialog that renders similar to Figure 5-1.

Figure 5-1. An example LanguageSelectionComponent rendering with the modal
shown

The Language Selection Component | 143

Now, let’s look at the following LanguageSelectionComponent.razor markup file, which
is responsible for rendering the modal dialog:

@inherits LocalizableComponentBase<LanguageSelectionComponent>

<ErrorBoundary>
 <ChildContent>

 <button class="button level-item is-rounded is-warning"
 title=@Localizer["Language"] @onclick=ShowAsync>

 <i class="fas fa-language"></i>

 </button>

 </ChildContent>
 <ErrorContent>

 <button class="button level-item is-rounded is-warning"
 disabled title=@Localizer["Language"]>

 <i class="fas fa-language"></i>

 </button>

 </ErrorContent>
</ErrorBoundary>

<ModalComponent @ref="_modal">
 <TitleContent>

 <i class="fas fa-cogs"></i>

 @Localizer["ChangeLanguage"]
 </TitleContent>

 <BodyContent>
 <form>
 <div class="field">
 <p class="control has-icons-left">

 <select id="languages" class="has-dotnet-scrollbar"
 @bind=_selectedCulture>
 @if (_supportedCultures?.Any() ?? false)
 {
 @foreach (var kvp
 in _supportedCultures.OrderBy(c => c.Key.Name))
 {
 var (culture, _) = kvp;
 <option selected="@(lcid == culture.LCID)"
 value="@culture">
 @(ToDisplayName(kvp))

144 | Chapter 5: Localizing the App

 </option>
 }
 }
 </select>

 <i class="fas fa-globe"></i>

 </p>
 </div>
 </form>
 </BodyContent>

 <ButtonContent>
 <div class="buttons are-large">
 <button class="button is-success"
 @onclick="ConfirmAsync">

 <i class="fas fa-check"></i>

 @Localizer["Okay"]
 </button>
 <button class="button is-danger"
 @onclick=@(() => _modal.CancelAsync())>

 <i class="fas fa-times"></i>

 @Localizer["Cancel"]
 </button>
 </div>
 </ButtonContent>
</ModalComponent>

An ErrorBoundary component is used to wrap the potentially errant component.

ModalComponent is used to render the modal dialog.

The body is an HTML form element.

ButtonContent renders both cancel and confirm buttons.

The LanguageSelectionComponent markup file starts with an ErrorBoundary com‐
ponent. Its ChildContent renders a button that binds its onclick event handler to
the ShowAsync method. ErrorContent renders a disabled button. Both render frag‐
ments use the same syntax to call into the LocalizableComponentBase.Localizer
instance. The @Localizer["Language"] invocation asks the localizer to fetch the
corresponding value for the "Language" key. This returns a framework-provided
LocalizedString type that represents a locale-specific string. The LocalizedString
type defines an implicit operator as a string.

The Language Selection Component | 145

The localization services understand that for IStringLocalizer<LanguageSelection
Component>, they should look for resources that match by naming convention. For
example, the LanguageSelectionComponent.razor and LanguageSelectionComponent
.razor.cs files are related, as they’re two partial class definitions for the same
object. The same relationship exists for this component’s resource files. I defined
a single LanguageSelectionComponent.razor.en.resx resource file for this, and that is
shown later in Example 5-1.

ModalComponent is captured as a reference and assigned to the _modal field using the
@ref="_modal" syntax. BodyContent contains a native HTML form element, and it
binds to a native HTML selection element. Each option node is bound from the
current culture in the iteration to the value attribute. It’s selected when the current
culture’s Language Code Identifier (or LCID) matches the one being iterated over.
A ToDisplayName helper method is used to convert the culture and azureCulture
objects into their text representation.

ButtonContent defines two buttons. The first button is the "Okay" button that calls
ConfirmAsync when clicked. The other button is the "Cancel" button, and when it’s
clicked, it will call _modal.CancelAsync().

When the user expands all of the supported cultures, the dialog will render similar to
that shown in Figure 5-2.

Figure 5-2. An example LanguageSelectionComponent rendering with an open modal
dialog and culture selection expanded

146 | Chapter 5: Localizing the App

At the time of writing this book, there was a bug concerning
ASP.NET Core’s ability to locate resources when the component
used a file-scoped namespace. As such, components that do not
display any text or user inputs do not need to be localized. So
they’re free to use file-scoped namespaces. You will see both name‐
space formats in the code, so don’t be alarmed.

The corresponding component partial code is reflected in the LanguageSelection
Component.razor.cs C# file. Let’s look at that next:

namespace Learning.Blazor.Components
{
 public partial class LanguageSelectionComponent
 {
 private IDictionary<CultureInfo, AzureCulture>? _supportedCultures;
 private CultureInfo _selectedCulture = null!;
 private ModalComponent _modal = null!;

 [Inject] HttpClient Http { get; set; } = null!;
 [Inject] public NavigationManager Navigation { get; set; } = null!;

 protected override async Task OnInitializedAsync()
 {
 var azureCultures =
 await Http.GetFromJsonAsync<AzureTranslationCultures>(
 "api/cultures/all",
 DefaultJsonSerialization.Options);

 _supportedCultures =
 Culture.MapClientSupportedCultures(azureCultures?.Translation);
 }

 private static string ToDisplayName(
 KeyValuePair<CultureInfo, AzureCulture> culturePair)
 {
 var (culture, azureCulture) = culturePair;
 return $"{azureCulture.Name} ({culture.Name})";
 }

 private async Task ShowAsync() => await _modal.ShowAsync();

 private async Task ConfirmAsync()
 {
 var forceRefresh =
 _selectedCulture is not null &&
 _selectedCulture != Culture.CurrentCulture;

 if (forceRefresh)
 {
 JavaScript.SetItem(
 StorageKeys.ClientCulture, _selectedCulture!.Name);

The Language Selection Component | 147

https://oreil.ly/Gwu5T

 }

 await _modal.ConfirmAsync();

 if (forceRefresh)
 {
 Navigation.NavigateTo(Navigation.Uri, forceLoad: true);
 }
 }
 }
}

Component state is managed by private fields.

The OnInitializedAsync method is used to fetch the supported cultures from
the server.

The ToDisplayName helper method is used to convert the culture and azure
Culture objects into their text representation.

Several methods expose _modal functionality to the component.

LanguageSelectionComponent defines a few fields and a few injected properties:

_supportedCultures

An IDictionary<CultureInfo, AzureCulture> field that represents the sup‐
ported cultures. The field’s keys are the framework-provided CultureInfo, and
their value is a custom AzureCulture positional record class.

_selectedCulture

This value is bound in the Razor markup to the select element and corresponds
to what the user has selected as their desired culture.

_modal

The reference to ModalComponent. With this reference, we will call ShowAsync
and ConfirmAsync to show and confirm the modal accordingly.

Http

A framework-provided HttpClient instance used to fetch the supported
cultures.

Navigation

A framework-provided NavigationManager used to force reloading of the cur‐
rent page. When changing the culture, this is required to reload the entire app.

When the component is initialized (OnInitializedAsync), the "api/cultures/all"
server endpoint is called. The _supportedCultures map is assigned from the

148 | Chapter 5: Localizing the App

returned values and a calculation of the intersecting supported cultures. These values
reflect the set of overlapping client cultures and the server’s supported set, as shown
in the example Venn diagram in Figure 5-3, where each small circle represents a
two-letter language identifier.

Figure 5-3. Supported cultures are the intersection of the client and server cultures

The remaining methods rely on the _modal instance:

ShowAsync

Delegate to _modal.ShowAsync().

ConfirmAsync

If the user has selected a different culture, a reload is forced, and the new value
is persisted to local storage. The modal is closed by the call to _modal.Confirm
Async().

LanguageSelectionComponent supports 41 languages. From the earlier markup
shown in the LanguageSelectionComponent.razor file, you may have noticed that
@Localizer has its indexer called with the given arguments:

"Language"

Bound in the <button title=@Localizer["Language"]></button> markup

"ChangeLanguage"

Bound to the TitleContent markup

"Okay"

Bound to the ButtonContent confirm button text

"Cancel"

Bound to the ButtonContent cancel button text

The Language Selection Component | 149

Each of these keys (or names) corresponds to the resource files of Language
SelectionComponent. Consider the LanguageSelectionComponent.razor.en.resx
resource file, shown in Example 5-1.

Example 5-1. Resource files for the LanguageSelectionComponent

<?xml version="1.0" encoding="utf-8"?>
<root>
 <!-- XML schema omitted for brevity -->

 <data name="ChangeLanguage" xml:space="preserve">
 <value>Change the current language?</value>
 </data>
 <data name="Language" xml:space="preserve">
 <value>Language</value>
 </data>
</root>

Each data node has a name attribute. This name matches the name you use when
asking an IStringLocalizer<T> for a corresponding value. The value returned
corresponds to the English version of the resource. Consider the LanguageSelection
Component.razor.es.resx resource file, shown in Example 5-2.

Example 5-2. Web.Client/Components/LanguageSelectionComponent.razor.es.resx

<?xml version="1.0" encoding="utf-8"?>
<root>
 <!-- XML schema omitted for brevity -->

 <data name="ChangeLanguage" xml:space="preserve">
 <value>¿Cambiar el idioma actual?</value>
 </data>
 <data name="Language" xml:space="preserve">
 <value>Idioma</value>
 </data>
</root>

This resource file has a subextension of .es.resx instead of .en.resx, and each value
is in Spanish. These resource files contain only two data nodes. There were two
additional names referenced in the markup, and that’s where CoalescingString
Localizer<T> comes in. The "Okay" and "Cancel" resources are part of the
SharedResource object resource files. This approach of coalescing does incur a
minor performance implication, but saying it’s minor is an overstatement. It’s proven
unmeasurable with all of my testing.

150 | Chapter 5: Localizing the App

1 Donald Knuth, “Structured Programming with go to Statements,” ACM Computing Surveys 6, no. 4 (Dec.
1974): 261–301, https://doi.org/10.1145/356635.356640.

This code is fully functional and readable. While it might seem
advantageous to spend time trying to optimize it, you should
heed the famous words of Professor Donald Knuth. He warns
developers that “premature optimization is the root of all evil” in
programming.1

Automating Translations with GitHub Actions
If it’s right for your app, you may want to have it support as many languages as
possible. This can be done manually by creating a static resource file for each lan‐
guage your app supports, or you could consider a more automated approach. How
might you manage the creation and maintenance of many resource files? If you’re
to do this manually, when a single translation file changes, you’d have to update
each corresponding supported language translation file by hand. Many larger apps
will have teams assigned to translation tasks, monitoring changes to translation files
and creating pull requests to make the appropriate changes, and this can become
expensive. As an alternative, you can automate this.

You can create your own GitHub Action to automate translation, or you can use an
existing GitHub Action that’s available on the GitHub Action Marketplace that does
the same thing. If this is new to you, I suggest using an existing GitHub Action, such
as the one I made for this book, called Machine Translator. It relies on Azure’s Cog‐
nitive Services Text Translator service, and it’s written in TypeScript. The Machine
Translator workflow in the Learning Blazor’s repo requires my Azure’s encrypted
subscription key so that it can access a cloud-based neural machine translation
technology. This allows for source-to-text translation, taking the static .resx resource
files as input and writing out translated text for non-English languages. Within a
GitHub repo, as an admin you can access the Settings > Secrets page, where you’ll add
several repository secrets that the action will rely on as it runs.

If you’re following along in your clone of the Learning Blazor App repo, see Micro‐
soft’s “Quickstart: Azure Cognitive Services Translator” documentation. With an
Azure Translator subscription key, you can run the action and see the results in
GitHub Action’s output. You need to set the AZURE_TRANSLATOR_SUBSCRIPTION_KEY,
AZURE_TRANSLATOR_ENDPOINT, and AZURE_TRANSLATOR_REGION secrets.

To automate the translation of the Learning Blazor app, we start with the following
machine-translation.yml workflow file:

Automating Translations with GitHub Actions | 151

https://doi.org/10.1145/356635.356640
https://oreil.ly/fFmmQ
https://oreil.ly/KjO9d
https://oreil.ly/KjO9d
https://oreil.ly/82O5w
https://oreil.ly/Otzm9

name: Azure Translation

on:
 push:
 branches: [main]
 paths:
 - '**.en.resx'
 - '**.razor.en.resx'

env:
 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

jobs:
 translate:
 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v2

 - name: Resource translator
 id: translator
 uses: IEvangelist/resource-translator@main
 with:
 subscriptionKey: ${{ secrets.AZURE_TRANSLATOR_SUBSCRIPTION_KEY }}
 endpoint: ${{ secrets.AZURE_TRANSLATOR_ENDPOINT }}
 region: ${{ secrets.AZURE_TRANSLATOR_REGION }}
 sourceLocale: 'en'
 toLocales: |
 '["af","ar","az","bg","ca","cs","da","de","el","fa",' +
 '"fi","fr","he","hi","hr","hu","id","it","ja","ko",' +
 '"la","lt","mk","nb","nl","pl","pt","ro","ru","sv",' +
 '"sk","sl","es","sr-Cyrl","sr-Latn","th","tr","uk",' +
 '"vi","zh-Hans","zh-Hant"]'

 - name: Create pull request
 uses: peter-evans/create-pull-request@v3.4.1
 if: ${{ steps.translator.outputs.has-new-translations }} == 'true'
 with:
 title: '${{ steps.translator.outputs.summary-title }}'
 body: '${{ steps.translator.outputs.summary-details }}'

The machine-translation.yml workflow is named Azure Translation.

The primary step in this workflow is to run the IEvangelist/resource-
translator@main GitHub Action.

The create-pull-request step is run only if the translator step outputs
changes.

152 | Chapter 5: Localizing the App

The GitHub Action workflow file describes the name as "Azure Translation", which
is used later by the GitHub Action real-time status screen. The on syntax is used to
describe when the action will run; this action runs when any .en.resx files are updated
and pushed to the main branch. The hosting environment maps the secrets context
object’s GitHub token value as GITHUB_TOKEN. The workflow defines a single job in
the jobs node, where named translate operation runs-on: ubuntu-latest (the
latest supported version of Ubuntu). Like most other GitHub Action workflow files, it
needs to check out the repo’s source code using the action/checkout@v2 action.

The second step of the steps node describes my IEvangelist/resource-

translator@main GitHub Action. This reference is identified as translator, which
later allows the workflow to reference it by name (or id) through expressions. The
with syntax allows this step to provide the required GitHub Action input. The keys
listed in the with node map directly to the names the GitHub Action publishes as
input:

subscriptionKey

A string value from the repo’s secrets context named AZURE_TRANSLATOR_SUB
SCRIPTION_KEY using expression syntax. This value should come from the Azure
Translator resource’s Keys and Endpoint page, and either KEY 1 or KEY 2 is
valid.

endpoint

A string value from the repo’s secrets context named AZURE_TRANSLATOR_END
POINT using expression syntax. This value should come from the Azure Transla‐
tor resource’s Keys and Endpoint page, and either KEY 1 or KEY 2 is valid.

region

A string value from the repo’s secrets context named AZURE_TRANSLATOR
_REGION using expression syntax.

sourceLocale

A literal value that equals the 'en' string.

toLocales

A string array of values for the locals to translate to using literal syntax.

Now, we need an action to conditionally run. We can use another action that’s avail‐
able in the Github Action Marketplace. GitHub user and community member Peter
Evans has a create-pull-request action that we can use. The Create pull request
step will run only when changes to resource files have occurred. This occurs when the
translator step has an output that indicates that new translations were created. The
pull requests are automated and appear as requests from the github-actions bot.

Automating Translations with GitHub Actions | 153

https://oreil.ly/0m9jO
https://oreil.ly/0m9jO

The pull requests’ description (title) and body are dynamically determined from
the output of the previous step. If you’re curious what an actual pull request from a
GitHub Action bot looks like, see automated pull request #13 in the Learning Blazor
sample app’s GitHub repo.

Machine Translations Are Only a Start
If you’re a solo developer on a project, it’s handy to set up machine translation to
make your work a bit easier. Just don’t set it and forget it. There is always room to
improve machine-translated files.

If it’s within your means, consider hiring translation professionals to both make the
translations sound more natural and help maintain these translation files.

As your apps grow in complexity, it’s important to reassess what parts of your app can
be localized. When in doubt, consider hiring professionals to help with this.

Now that we’ve covered how resource files are used and their translation files are
generated, we can move on to exploring various localization formatting examples.

Localization in Action
Thus far, we’ve scrutinized the XML resource files, and we saw a mechanism for
accessing the data in these files with the framework-provided IStringLocalizer<T>
abstraction. In this section, you’ll learn how the “Have I Been Pwned” (HIBP) ser‐
vice (see “Leveraging “Pwned” Functionality” on page 63) of the Learning Blazor
sample app works and how its content is affected by localization. You’ll also learn the
role of the LocalizableComponentBase<T>.Localizer property. As an example, this
functionality pairs nicely with both localized and nonlocalized content, as you will
see. As we look through this, you’ll learn a bit more about how the app uses the HIBP
services. The site has a Pwned?! top-level navigation, and clicking this link navigates
the user to the https://webassemblyof.net/pwned route, as depicted in Figure 5-4.

Figure 5-4. Pwned page rendering with Breaches and Passwords subroutes

The /pwned route renders a page with two buttons, each with a link to its correspond‐
ing subroute. The Breaches button routes to /pwned/breaches, and the Passwords
button routes to /pwned/passwords.

154 | Chapter 5: Localizing the App

https://oreil.ly/8bp3v

The markup for the Pwned.razor page is as follows:

@page "/pwned"
@attribute [Authorize]
@inherits LocalizableComponentBase<Pwned>

<PageTitle>
Pwned

</PageTitle>

<div class="tile is-ancestor">
 <div class="tile is-vertical is-centered is-7">
 <div class="tile">
 <div class="tile is-parent is-clickable"
 @onclick=@NavigateToBreaches>
 <article class="tile is-child notification is-warning">
 <p class="title">🤬
 @Localizer["Breaches"]
 </p>
 </article>
 </div>
 <div class="tile is-parent is-clickable"
 @onclick=@NavigateToPasswords>
 <article class="tile is-child notification is-danger">
 <p class="title">🔑
 @Localizer["Passwords"]
 </p>
 </article>
 </div>
 </div>
 </div>
</div>

The page uses the framework-provided PageTitle component. This sets the
browser tab title to Pwned.

The button text is localized using the Localizer instance and the "Breaches"
resource.

The button text is localized using the Localizer instance and the "Passwords"
resource.

This is the first time you’re seeing the @attribute directive in this book. This
directive lets you add any valid class-scoped attribute to the page. In this case, the
Authorize attribute is added to the page. This attribute is used by the framework
to determine whether the user is logged in. If the user is not logged in, they are
redirected to the login page. Next, let’s look at the component shadow. Consider the
Pwned.razor.cs C# file:

Localization in Action | 155

namespace Learning.Blazor.Pages
{
 public partial class Pwned
 {
 [Inject]
 public NavigationManager Navigation { get; set; } = null!;

 private void NavigateToBreaches() =>
 Navigation.NavigateTo("pwned/breaches");

 private void NavigateToPasswords() =>
 Navigation.NavigateTo("pwned/passwords");
 }
}

The Pwned page depends on the injected NavigationManager instance, using its
navigation functionality.

The page has two navigation methods that navigate to the Breaches and Pass‐
words subroutes when called.

The Pwned page has the following English Pwned.razor.en.resx resource file:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <!--
 Schema omitted for brevity...
 -->

 <data name="Breaches" xml:space="preserve">
 <value>Breaches</value>
 </data>
 <data name="Passwords" xml:space="preserve">
 <value>Passwords</value>
 </data>
</root>

The first data node is named "Breaches" and has a child value node of
Breaches.

The last data node is named "Passwords" and has a child value node of
Passwords.

You might be wondering why we aren’t using only the name attribute. That’s because,
when localized, name isn’t translated, only the value. This is based on the schema of
the resource file XML and is universal to all .NET apps.

The Breaches page lets the user freely enter any email address and check if it has
been part of a data breach. This page renders as shown in Figure 5-5.

156 | Chapter 5: Localizing the App

Figure 5-5. The Breaches page rendering

When the language of the app is set to (es-ES), the page renders as shown in
Figure 5-6.

Figure 5-6. The Breaches page rendering in Spanish

Before entering an email address, there are several textual values drawn on the screen,
as shown in Figure 5-5:

';--have i been pwned?

This value is not translated and is hardcoded in the markup because it’s a name
and shouldn’t be translated.

pwned

Likewise, this value isn’t translated either because it’s a term that’s well known on
the internet and doesn’t need to be translated.

Localization in Action | 157

Email address

This value is translated, and its name is "EmailAddress" in Localizer.

Breaches

This value is translated, and its name is "Breaches" in Localizer.

Apply filter

This value is translated, and its name is "ApplyFilter" in Localizer.

Rather than showing the entire markup file, I’m going to focus on specific parts
of the markup as it relates to localization. Consider the following snippet from the
Breaches.razor markup file, which focuses on the email address input field:

<InputText @bind-Value=_model.EmailAddress
 @ref=_emailInput class="input is-large"
 autocomplete="hidden"
 placeholder=@Localizer["EmailAddress"] />

This is the markup for the email address input. The framework-provided InputText
is used to render the text input for the email address. Its placeholder displays a hint
for the user, expressing what the expected value is for a given HTML input element.
In this case, a localized string of "Email address" is rendered.

Imagine that the user starts searching for data breaches. When an email isn’t found
in any data-breach records (such is the case with fake-email@not-real.com), the results
are formatted using the IStringLocalizer<T> indexer with parameter overload.
Consider the following snippet from the Breaches.razor markup file:

 <i class="fas fa-check" aria-hidden="true"></i>

 @Localizer["NoBreachesFormat", _model.EmailAddress!]

In this scenario, the Localizer instance calls its indexer and passes the "NoBreaches
Format" resource name and the model’s EmailAddress. This renders as shown in
Figure 5-7.

The lack of a data breach is certainly a relief; however, it’s not entirely realistic.
Chances are your email address has been compromised in a data breach. As an
example, when the user searches for test@user.org, the Breaches page queries the
Web.Api service’s /api/pwned/breaches endpoint. When the results are returned, the
component updates to show a list of data breaches. To verify that the breaches page
is capable of successfully communicating with the Web.PwnedApi project’s endpoints,
we can use a test user email address that is known to have been breached seven
times. If you visit the Learning Blazor sample app’s Breaches page and enter the
“test@user.org” email, you’ll see that it has, indeed, been pwned seven times, as shown

158 | Chapter 5: Localizing the App

https://oreil.ly/MimnM
https://oreil.ly/MimnM

in Figure 5-8. The Breaches page makes use of the custom-shared ModalComponent
and displays the details of each breach when the result row is clicked.

Figure 5-7. The Breaches page rendering when no results are found

Figure 5-8. The Breaches page rendering for test@user.org

Localization in Action | 159

Let’s say you’re interested in learning more about the Dropbox data breach. You
can click on the breach to learn more information. This action displays the modal
and passes the selected data breach record as a component parameter, as shown in
Figure 5-9.

Figure 5-9. The Dropbox data breach modal

To help further understand how localization works, we’ll look at the translation
resource file of the Breaches.razor.en.resx XML:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <!--
 Schema omitted for brevity...
 -->
 <data name="Breaches" xml:space="preserve">
 <value>Breaches</value>
 </data>

160 | Chapter 5: Localizing the App

 <data name="EmailAddress" xml:space="preserve">
 <value>Email address</value>
 </data>
 <data name="Filter" xml:space="preserve">
 <value>Apply filter</value>
 </data>
 <data name="InvalidEmailAddress" xml:space="preserve">
 <value>This email is invalid</value>
 </data>
 <data name="NoBreachesFormat" xml:space="preserve">
 <value>No breaches found for {0}.</value>
 </data>
</root>

There are several name-value pairs with English values in this resource file. Other
languages will have their translated values. Most components inherit either from the
custom LocalizableComponentBase or the framework-provided IStringLocalizer.
Then each component defines resource files and uses the localizer instance to retrieve
the resources at runtime.

Next, let’s look at the Passwords page and a select few segments from its
Passwords.razor markup:

<div class="field has-addons">
 <p class="is-fullwidth control has-icons-left @(loadingClass)">
 <InputText id="password" @ref=_passwordInput
 type="password" autocomplete="hidden"
 @bind-Value=_model.PlainTextPassword
 class="input is-large"
 DisplayName=@Localizer["Password"]
 placeholder=@Localizer["Password"] />

 <i class="fas fa-key"></i>

 </p>
 <div class="control">
 <button type="submit" disabled="@(_isFormInvalid)"
 class="button is-danger is-large @(loadingClass)">

 <i class="fas fa-question"></i>

 pwned
 </button>
 </div>
</div>

The password InputText component has its placeholder and DisplayName
attributes assigned from the localizer "Password" resource.

Localization in Action | 161

When the user first lands on this page, the results are empty, but the heading text
and the message prompt are both localized resources. These are rendered as shown in
Figure 5-10.

Figure 5-10. The Passwords page

Now we’ll see the following segment from the Passwords.razor markup, which is
responsible for rendering the results content:

<article class="panel is-info">
 <p class="panel-heading has-text-left">

 @Localizer["Results"]

 @if (_pwnedPassword?.IsPwned ?? false)
 {

 pwned

 @(_pwnedPassword.PwnedCount.ToString(
 "N0", Culture.CurrentCulture))

 <span class="tags is-clickable
 are-medium has-addons" @onclick=Reset>
 reset

162 | Chapter 5: Localizing the App

 <i class="fas fa-redo-alt"
 aria-hidden="true">
 </i>

 }

 </p>

 <!-- The remaining markup is discussed later -->
</article>

The localizer gets the resource value matching the "Results" name and plots it
into the article element heading.

Using a control structure, when the component’s _pwnedPassword object is not
null and has a IsPwned value of true, two bits of information are added.

The number of times that the given password has been pwned is formatted as a
string using the standard C# number formatting and the current culture.

Imagine that a user types "password" into the input field and searches to see if it has
ever been pwned. It’s easy to imagine that this password has been used many times,
and you’re not wrong. See Figure 5-11 for an example rendering of how many times
"password" has been pwned. Yikes!

Figure 5-11. The Passwords page with a pwned password

Localization in Action | 163

There are a few additional control structures within the Passwords page. Consider
the remaining Passwords.razor markup:

@if (_pwnedPassword?.IsPwned ?? false)
{

 <i class="fas has-text-danger
 fa-exclamation-circle" aria-hidden="true">
 </i>

 @Localizer["OhNoFormat", _pwnedPassword.PwnedCount]

}
else if (_state is ComponentState.Loaded)
{

 <i class="fas has-text-success
 fa-check" aria-hidden="true"></i>

 @Localizer["NotPwned"]

}
else
{

 <i class="fas fa-question-circle"
 aria-hidden="true"></i>

 @Localizer["EnterPassword"]

}

If the password has been pwned, the OhNoFormat resource is used to format the
localized message.

A message is displayed indicating that the password has not been compromised.

Otherwise, a prompt localizer message is displayed.

For relying on whether the _pwnedPassword object is null and when it has an
IsPwned value of true, there is conditional rendering. This will show the exclamation
icon with a formatted resource matching the "OhNoFormat" name and given the
number of times the password has been pwned. This relies on the Localizer indexer
overload that accepts params object[] arguments. When the _state object is set
as loaded, but the _pwnedPassword object is either null or has a nonpwned result,
the "NotPwned" resource is rendered. When the page is first rendered, neither the

164 | Chapter 5: Localizing the App

_pwnedPassword object nor the _state object is set; in this case, the "EnterPassword"
resource is rendered. This prompts the user to enter a password.

Notice in the following XML resource that each data node has a name attribute and a
single value subnode. Consider the Passwords.razor.en.resx file:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <!--
 Schema omitted for brevity...
 -->
 <data name="EnterPassword" xml:space="preserve">
 <value>Please enter a password to check if it's been "pwned".</value>
 </data>
 <data name="NotPwned" xml:space="preserve">
 <value>Great news, this password has not been "pwned"!</value>
 </data>
 <data name="OhNoFormat" xml:space="preserve">
 <value>Sorry, this password has been "pwned" {0:N0} times!</value>
 </data>
 <data name="Password" xml:space="preserve">
 <value>Password</value>
 </data>
 <data name="Passwords" xml:space="preserve">
 <value>Passwords</value>
 </data>
 <data name="Results" xml:space="preserve">
 <value>Results</value>
 </data>
</root>

Summary
In this chapter, I showed you how to localize Blazor WebAssembly apps. You learned
what localization means as it pertains to .NET apps and what it means to localize an
app. I showed you how to localize apps into dozens of languages using a GitHub
Action that relies on Azure Cognitive Services. I explained how Blazor WebAssembly
recognizes resource files using a familiar resource manager. I also covered how to
consume the IStringLocalizer<T> interface.

In the next chapter, you’ll learn how to use ASP.NET Core SignalR with Blazor
WebAssembly. You’ll learn a pattern for using real-time web functionality throughout
the app, along with a custom notification system, messaging page, and live tweet
streaming page.

Summary | 165

CHAPTER 6

Exemplifying Real-Time Web Functionality

No web user wants to hit refresh constantly for the latest information. They want
everything right now, automatically. Real-time web functionality is very common,
and most modern apps require it. Many apps rely on live data to provide pertinent
information to their users as soon as it becomes available. In this chapter, you’ll learn
how to implement real-time web functionality using ASP.NET Core SignalR (or just
SignalR). You’ll then find out how to create a server-side (Hub) that will expose many
live data points, such as real-time alerts and notifications, a messaging system for
live-user interactions, and a joinable active Twitter stream. Finally, you’ll learn how
to consume this data from our Blazor WebAssembly app, which will respond to and
interact with these live data points in compelling ways.

Defining the Server-Side Events
For your Blazor app to have real-time web functionalities, you need a way for it to
receive live data. That’s where SignalR comes in. Real-time browser-to-server proto‐
cols such as WebSockets or Server-Side Events can be complex to implement. SignalR
provides an abstraction layer over these protocols and reduces the complexity with
a succinct API. To handle the many clients to a single server, SignalR introduces the
hub as a proxy between the clients and the server. In a hub, you define methods that
can be called directly from clients. Likewise, the server can call methods on any of
the connected clients. With a hub, you can define methods from the client to the
server or server to the client—this is a two-way (duplex) communication. There is
also a cloud-ready implementation of SignalR, called Azure SignalR Service. This
service removes the need to manage backplanes that handle scalability and client
connectivity.

167

https://oreil.ly/C8Vae

The point of doing this is to allow your app to have real-time alerts, a messaging
system for live-user interactions, and a joinable active Twitter stream. SignalR makes
all of this possible.

This concept of one machine calling into another is known as a remote procedure call
(RPC). All communication to the server requires an authentication token. Without
a valid authentication token, the connection will not be established or maintained.
With a valid token, the communication between the Web.Client app and the HTTP
endpoints that it relies on is going to establish an open line where messages can be
sent and received unsolicited from either process over network boundaries in real
time. The optimal scenario is when both processes negotiate and agree upon the
usage of WebSockets as the communication transport.

Exposing Twitter Streams and Chat Functionality
The following examples highlight a live stream of tweets and a presence-aware chat
implementation, as shown in Figures 6-1 and 6-2.

Figure 6-1. Tweets page rendering

168 | Chapter 6: Exemplifying Real-Time Web Functionality

Figure 6-2. Chat page rendering

The Learning Blazor model app makes use of a single notification hub that manages
all of the real-time functionality. In the model app, the Web.Api project contains
the SignalR hub definition. It defines a single NotificationHub class, but there
are three files in total. Each of these files represents a partial implementation of
the NotificationHub object. The domain-specific segments are encapsulated within
their file, for example, the NotificationHub.Chat.cs and NotificationHub.Tweets.cs. Let’s
examine the NotificationHub.cs C# file first:

namespace Learning.Blazor.Api.Hubs;

[Authorize, RequiredScope(new[] { "User.ApiAccess" })]
public partial class NotificationHub : Hub
{
 private readonly ITwitterService _twitterService;
 private readonly IStringLocalizer<Shared> _localizer;

 private string _userName => Context.User?.Identity?.Name ?? "Unknown";
 private string[]? _userEmail => Context.User?.GetEmailAddresses();

 public NotificationHub(
 ITwitterService twitterService,
 IStringLocalizer<Shared> localizer) =>
 (_twitterService, _localizer) = (twitterService, localizer);

 public override Task OnConnectedAsync() =>
 Clients.All.SendAsync(
 HubServerEventNames.UserLoggedIn,
 Notification<Actor>.FromAlert(
 new(UserName: _userName,
 Emails: _userEmail)));

 public override Task OnDisconnectedAsync(Exception? ex) =>
 Clients.All.SendAsync(
 HubServerEventNames.UserLoggedOut,
 Notification<Actor>.FromAlert(
 new(UserName: _userName)));
}

Defining the Server-Side Events | 169

NotificationHub is protected by the apps Azure AD B2C tenant.

The override Task OnConnectedAsync method is implemented as an expression
that sends an event HubServerEventNames.UserLoggedIn to all the connected
clients.

The override Task OnDisconnectedAsync method expects an error.

A valid authentication token must be provided from one of the configured third-
party authentication providers, and the claims of the request must be a part of
the "User.ApiAccess" scope. NotificationHub is a descendant of the framework-
provided Hub class. This is a requirement for a SignalR server: they must expose a hub
endpoint. The primary functionality in this file is the constructor (.ctor) definition
and the overrides for handling connection and disconnection events. The other hub
partials are domain-specific. This class defines several fields:

ITwitterService _twitterService

This service relies on the TweetInvi NuGet package. It manages streaming Twit‐
ter APIs and streams filtered on specific hashtags and handles.

IStringLocalizer<Shared> _localizer

The Shared class contains resources for the NotificationHub that are localized.
Certain generic messages are translated for the alert and notification system.

string _userName

The hub has a single user in context. This user is the representation of the
deserialized tokens from the authentication connection—in other words, the user
who is currently interacting with the hub.

string[]? _userEmail

The hub’s user also has one or more email addresses.

The event is a Notification<Actor>. The generic notification object is a record
class with a user name and an array of email addresses. These events are somewhat
generic, so they can be shared by different interested parties on the client. There are
some additional features the model app requires to provide a feature-rich chat room
experience. You’ll learn a nice clean way to implement the “user is typing” indicator,
create and share custom rooms, edit sent messages, and so on in this chapter. These
same features can be reused in your Blazor apps by using similar code. Let’s explore
the NotificationHub.Chat.cs C# file as it shows the hub’s implementation of the chat
functionality:

170 | Chapter 6: Exemplifying Real-Time Web Functionality

https://oreil.ly/wcZVs

namespace Learning.Blazor.Api.Hubs;

public partial class NotificationHub
{
 public Task ToggleUserTyping(bool isTyping) =>
 Clients.Others.SendAsync(
 HubServerEventNames.UserTyping,
 Notification<ActorAction>.FromAlert(
 new(UserName: _userName ?? "Unknown",
 IsTyping: isTyping)));

 public Task PostOrUpdateMessage(
 string room, string message, Guid? id = default!) =>
 Clients.Groups(room).SendAsync(
 HubServerEventNames.MessageReceived,
 Notification<ActorMessage>.FromChat(
 new(Id: id ?? Guid.NewGuid(),
 Text: message,
 UserName: _userName ?? "Unknown",
 IsEdit: id.HasValue)));

 public async Task JoinChat(string room)
 {
 await Groups.AddToGroupAsync(Context.ConnectionId, room);

 await Clients.Caller.SendAsync(
 HubServerEventNames.MessageReceived,
 Notification<ActorMessage>.FromChat(
 new(Id: Guid.NewGuid(),
 Text: _localizer["WelcomeToChatRoom", room],
 UserName: UTF8.GetString(
 new byte[] { 240, 159, 145, 139 }),
 IsGreeting: true)));
 }

 public async Task LeaveChat(string room)
 {
 await Groups.RemoveFromGroupAsync(Context.ConnectionId, room);

 await Clients.Groups(room).SendAsync(
 HubServerEventNames.MessageReceived,
 Notification<ActorMessage>.FromChat(
 new(Id: Guid.NewGuid(),
 Text: _localizer["HasLeftTheChatRoom", _userName ?? "?"],
 UserName: UTF8.GetString(
 new byte[] { 240, 159, 164, 150 }))));
 }
}

Defining the Server-Side Events | 171

The ToggleUserTyping method alters the state of a client chat user.

The PostOrUpdateMessage method posts a message to the chat room.

The JoinChat method adds the client to the chat room.

The LeaveChat method removes the client from the chat room.

The ToggleUserTyping method accepts a bool value that indicates if the contextual
user’s connection is actively typing in the chat room. This signals the HubServer
EventNames.UserTyping event sending out a Notification<ActorAction> object
that represents the user and their typing status as a message.

The PostOrUpdateMessage method defines room and message string parameters and
an optional id. If the id is null, a new globally unique identifier (GUID) is assigned
to the message. The message contains the message text, the user who sent it, and
whether the message is considered edited. This is used for both creating and updating
user chat messages.

The JoinChat method requires a room. When called, the current connection is added
to either a new or existing SignalR group with the matching room name. The method
then lets the current caller know that the HubServerEventNames.MessageReceived
event has fired, sending a welcome message to the chat room. This event sends a
Notification<ActorMessage>. All clients have access to this custom generic notifica‐
tion model; it’s part of the Web.Models project. This is perfect because the clients can
share these models, and serialization just works. This is far different than your typical
JavaScript development, where you’d struggle to maintain the ever-changing shapes of
API objects.

The LeaveChat method is the companion to the JoinChat functionality. This is
intentional—you need a way to exit a room once you’ve joined it from the client. This
happens in the LeaveChat method where HubServerEventNames.MessageReceived is
sent from chat. The current contextual user’s connection to the SignalR hub instance
removes them from the chat room. That specific group is sent an automated message
with a bot user name and a localized message.

The chat functionality is taking shape. Imagine now that your app requires access to
a live Twitter feed. The model app provides an example of how to do this too. With
a requirement for Twitter-specific functionality that is communicated in real time,
consider the NotificationHub.Tweets.cs C# file hub implementation:

public partial class NotificationHub
{
 public async Task JoinTweets()
 {

172 | Chapter 6: Exemplifying Real-Time Web Functionality

 await Groups.AddToGroupAsync(
 Context.ConnectionId,
 HubGroupNames.Tweets);

 if (_twitterService.CurrentStatus is StreamingStatus status)
 {
 await Clients.Caller.SendAsync(
 HubServerEventNames.StatusUpdated,
 Notification<StreamingStatus>.FromStatus(status));
 }

 if (_twitterService.LastFiftyTweets is { Count: > 0 })
 {
 await Clients.Caller.SendAsync(
 HubServerEventNames.InitialTweetsLoaded,
 Notification<List<TweetContents>>.FromTweets(
 _twitterService.LastFiftyTweets.ToList()));
 }
 }

 public Task LeaveTweets() =>
 Groups.RemoveFromGroupAsync(
 Context.ConnectionId,
 HubGroupNames.Tweets);

 public Task StartTweetStream() =>
 _twitterService.StartTweetStreamAsync();
}

The JoinTweets method adds the client to the Tweets group.

The LeaveTweets method removes the client from the Tweets group.

The StartTweetStream method starts the tweet stream.

The RPCs in the tweets hub bring together the ability to join the tweet stream. When
this fires, the current connection joins the HubGroupNames.Tweets group. The scoped
_twitterService is asked a few questions, such as what the current streaming status
is and if there are any tweets in memory:

• When the current Twitter streaming status is not null and has a value, it’s•
assigned to status variables. This status flows to all connected clients, as they’re
notified of the current Twitter StreamingStatus.

• When there are tweets in memory, all connected clients are notified of the tweets•
as a List<TweetContents> collection.

Defining the Server-Side Events | 173

The LeaveTweets method removes the contextual connection from the HubGroup
Names.Tweets group. The StartTweetStream is idempotent as it can be called mul‐
tiple times without changing the state of the first successful call to start the tweet
stream. This is represented as an asynchronous operation.

You’re probably starting to wonder where the live tweets are coming from. We’ll cover
that next when we look at the background service.

Writing Contextual RPC and Inner-Process Communication
The Web.Api project of our model app is responsible for exposing an HTTP API
surface area, so it’s scoped to handle requests and provide responses. We’re going
to explore how to use an IHubContext, which allows our background service to
communicate with the NotificationHub implementation. Beyond that, the model
app shows a SignalR /notifications endpoint, which is handled by the collective
representation of all partial NotificationHub class implementations. As for the
live-streaming aspect of this application, we rely on a Twitter service, but we need
a way to listen for events. Within an ASP.NET Core app, you can use a Background
Service, which runs in the same process but outside the request and response
pipeline. SignalR provides a mechanism to access NotificationHub through an IHub
Context interface. This all comes together as shown in Figure 6-3.

Figure 6-3. The Web.Api server project

Let’s look at the TwitterWorkerService.cs C# file next:

namespace Learning.Blazor.Api.Services;

public sealed class TwitterWorkerService : BackgroundService
{
 private readonly ITwitterService _twitterService;
 private readonly IHubContext<NotificationHub> _hubContext;

 public TwitterWorkerService(
 ITwitterService twitterService,
 IHubContext<NotificationHub> hubContext)

174 | Chapter 6: Exemplifying Real-Time Web Functionality

 {
 (_twitterService, _hubContext) = (twitterService, hubContext);

 _twitterService.StatusUpdated += OnStatusUpdated;
 _twitterService.TweetReceived += OnTweetReceived;
 }

 protected override async Task ExecuteAsync(
 CancellationToken stoppingToken)
 {
 while (!stoppingToken.IsCancellationRequested)
 {
 await Task.Delay(TimeSpan.FromMinutes(1), stoppingToken);
 }
 }

 private Task OnStatusUpdated(StreamingStatus status) =>
 _hubContext.Clients
 .Group(HubGroupNames.Tweets)
 .SendAsync(
 HubServerEventNames.StatusUpdated,
 Notification<StreamingStatus>.FromStatus(status));

 private Task OnTweetReceived(TweetContents tweet) =>
 _hubContext.Clients
 .Group(HubGroupNames.Tweets)
 .SendAsync(
 HubServerEventNames.TweetReceived,
 Notification<TweetContents>.FromTweet(tweet));
}

TwitterWorkerService implements BackgroundService.

The constructor takes the ITwitterService and IHubContext as parameters.

The ExecuteAsync method is the main entry point for the service.

The OnStatusUpdated method is called when _twitterService fires the Status
Updated event.

OnTweetReceived handles the TweetReceived event, notifying all clients in the
HubGroupNames.Tweets group.

TwitterWorkerService is a descendant of BackgroundService. Background services
are long-lived apps that execute in a loop but with access to the notification hub’s
context, and they can send messages through their connected clients. This class
defines two fields:

Defining the Server-Side Events | 175

ITwitterService _twitterService

This is the same service that was used in the NotificationHub for in-memory
streaming status and tweets. It can now handle events from the underlying
TweetInvi’s filtered streams.

IHubContext<NotificationHub> _hubContext

This object is used to send messages out to connected clients of the SignalR
server hub.

The TwitterWorkerService constructor declares the values as parameters. The DI
framework will provide the service and hub context objects. They’re positionally
assigned using an immediate deconstruction of a tuple literal from the .ctor param‐
eters. _twitterService has its StatusUpdated and TweetReceived event handlers
assigned. The Twitter service exposes an eventing mechanism and fires an event
when a tweet is received. In C# you can subscribe a delegate to events that will serve
as a callback. There is no need to unsubscribe from the events because the app will
not stop unless the entire app is torn down. In that case, we’re not holding on to any
unsubscribed events—the entire process is being terminated.

The ExecuteAsync method is implemented as a signal that the app can perform its
task. This just spins, listening for the stopping token’s cancellation request. It just
delays and listens in an asynchronous loop.

When the _twitterService.OnStatusUpdated event fires, an update on the current
streaming status is sent to all subscribers. All contextual clients in the HubGroup
Names.Tweets group are sent the HubServerEventNames.StatusUpdated event. The
notification is StreamingStatus.

The _twitterService.OnTweetReceived event is handled when a new Tweet

Contents tweet object is received. These tweet contents are sent from the Hub
ServerEventNames.TweetReceived event. They are also sent over to the same group
named HubGroupNames.Tweets.

The server functionality is complete. With this, we can serve up a SignalR connection
over a negotiated /notifications endpoint. Each client negotiates what protocol
and transport they speak. A SignalR transport is the communication handler, such as
WebSockets, Server-Sent Events, and Long Polling. There are various ways in which
clients can talk to servers and vice versa. This usually follows a fallback convention of
preferred defaults to less than preferred. The good news is that most modern browser
environments support WebSockets, which are highly performant.

176 | Chapter 6: Exemplifying Real-Time Web Functionality

Configuring the Hub Endpoint
For the functionality of the hub to be exposed as a consumable route, it has to
configure how clients will communicate with it. There are a few things that need to be
configured:

• The desired message and transport protocols (may require additional NuGet•
packages)

• The mapping of NotificationHub to the /notifications endpoint•
• The registration of TwitterWorkerService as a hosted service (Background•
Service)

Since the Web.Api project targets the net6.0 TFM and specifies <Project

Sdk="Microsoft.NET.Sdk.Web">, SignalR is implicitly referenced as part of the SDK’s
meta-package. For an overview of SDKs in .NET, see Microsoft’s “.NET Project SDKs”
documentation. The default message protocol is JSON (text-based protocol), which
is human-readable and convenient for debugging. However, it is far more efficient to
use MessagePack, which is a binary protocol, and messages are usually half the size.

The Web.Api.csproj XML file includes the following among other package references:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <RootNamespace>Learning.Blazor.Api</RootNamespace>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>true</ImplicitUsings>
 <DockerDefaultTargetOS>Linux</DockerDefaultTargetOS>
 <DockerfileContext>..\..</DockerfileContext>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Version="6.0.1"
 Include="Microsoft.AspNetCore.SignalR.Protocols.MessagePack" />
 <!-- Additional package references omitted for brevity -->
 </ItemGroup>
 <ItemGroup>
 <!--
 Project references omitted for brevity:
 Abstractions, Cosmos DB, Distributed Caching,
 Extensions, Http.Extensions, LogicAppServices, TwitterServices
 -->
 </ItemGroup>

 <!-- Omitted for brevity -->
</Project>

Defining the Server-Side Events | 177

https://oreil.ly/T4WRW
https://oreil.ly/T4WRW

The Microsoft.AspNetCore.SignalR.Protocols.MessagePack NuGet package
reference is included.

This exposes the MessagePack binary protocol. The client has to also configure
MessagePack for this protocol to be used or it will fall back to the default text-based
JSON protocol.

In the Web.Api project’s Startup class, we add SignalR and map the Notification
Hub to the "/notifications" endpoint. Consider the Startup.cs C# file:

namespace Learning.Blazor.Api;

public sealed partial class Startup
{
 readonly IConfiguration _configuration;

 public Startup(IConfiguration configuration) =>
 _configuration = configuration;
}

The Startup class is partial, and it defines only the _configuration field and the
constructor that accepts the configuration. By convention, a startup object has two
methods:

ConfigureServices(IServiceCollection services)

This method is responsible for registering services on the service collection
(commonly achieved with helper Add{DomainService} extension methods).

Configure(IApplicationBuilder app, IWebHostEnvironment env)

This method is responsible for configuring services for usage (commonly
achieved with helper Use{DomainService} extension methods).

First, we add SignalR in the Startup.ConfigureServices.cs C# file:

namespace Learning.Blazor.Api;

public sealed partial class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
 .AddMicrosoftIdentityWebApi(
 _configuration.GetSection("AzureAdB2C"));

 services.Configure<JwtBearerOptions>(
 JwtBearerDefaults.AuthenticationScheme,
 options =>
 options.TokenValidationParameters.NameClaimType = "name");

 services.AddApiServices(_configuration);

178 | Chapter 6: Exemplifying Real-Time Web Functionality

 var webClientOrigin = _configuration["WebClientOrigin"];
 services.AddCors(
 options => options.AddDefaultPolicy(
 builder => builder.WithOrigins(
 "https://localhost:5001", webClientOrigin)
 .AllowAnyMethod()
 .AllowAnyHeader()
 .AllowCredentials()));

 services.AddControllers();

 services.AddSignalR(
 options => options.EnableDetailedErrors = true)
 .AddMessagePackProtocol();
 }
}

IServiceCollection has services added to it.

JwtBearerOptions are configured.

The SignalR service is configured to show detailed errors and adds MessagePack.

Authentication middleware is added, and this should look a bit familiar by now—it’s
configured using the same Azure AD B2C tenant shown in previous chapters. It is
configured to use the "name" as the name claim type. Since our Blazor WebAssembly
app makes requests to different origins, our API needs to allow CORS.

SignalR is added, using the .AddSignalR extension method. Chained fluently on this
call is a call to AddMessagePackProtocol, and as the name signifies, this will add
MessagePack as the desired SignalR message protocol.

After adding these services to the startup routine, now we can configure them. Let’s
have a look at the Startup.Configure.cs C# file:

namespace Learning.Blazor.Api;

public sealed partial class Startup
{
 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseHttpsRedirection();
 app.UseRouting();

 var webClientOrigin = _configuration["WebClientOrigin"];
 app.UseCors(options =>

Defining the Server-Side Events | 179

 options.WithOrigins(
 "https://localhost:5001", webClientOrigin)
 .AllowAnyHeader()
 .AllowAnyMethod()
 .AllowCredentials());

 var localizationOptions = new RequestLocalizationOptions()
 .SetDefaultCulture(Cultures.Default)
 .AddSupportedCultures(Cultures.Supported)
 .AddSupportedUICultures(Cultures.Supported);

 app.UseRequestLocalization(localizationOptions);
 app.UseAuthentication();
 app.UseAuthorization();
 app.UseResponseCaching();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 endpoints.MapHub<NotificationHub>("/notifications");
 });
 }
}

The Configure method is a convention of ASP.NET Core web apps. It configures
services for DI.

The Web.Api project supports request localization, which is similar to locali‐
zation detailed in Chapter 5 with translation resource files and the IString
Localizer<T> abstraction.

NotificationHub is mapped to its endpoint.

The Configure functionality starts by conditionally using the developer exception
page when the current runtime environment is configured as "Development". HTTPs
redirection is used, which enforces the https:// scheme for the API. The use of
routing enables endpoint middleware services. Next, the model app’s CORS that was
previously added is now being used.

In the previous chapter, we explored the concepts of localization. In the Web.Api
project, we use a variation of the same approach. While all resource files use the
same mechanics in this project, the concept of localization from a Web API project
requires a request-specific middleware that will automatically set the appropriate
Culture based on the HTTP request itself. The configuration routine specifies the use
of several more middleware services:

180 | Chapter 6: Exemplifying Real-Time Web Functionality

UseAuthentication

Uses the added Azure AD B2C tenant

UseAuthorization

Allows APIs to be decorated with Authorize attributes, which require an authen‐
ticated user

ResponseCaching

Allows APIs to declaratively specify caching behavior

The call to UseEndpoints is required for SignalR, as NotificationHub is mapped
to the "/notifications" endpoint. With that in place, the project is ready to serve
many connected clients concurrently.

In the next section, we will examine how this data is ingested by the client app.

Consuming Real-Time Data on the Client
Getting back to the Web.Client project, the model app for this book uses real-time
data in several components and pages. To avoid opening multiple connections to
the server from a single client, a shared approach for the hub connection is used.
Each client will have exactly one SharedHubConnection instance. The SharedHub
Connection class has several implementations, and it’s responsible for managing a
single framework-provided HubConnection that is shared by several components.
Before we can use a HubConnection, we must first configure the client to support this
type. The SharedHubConnection class shares a single HubConnection instance, and it’s
responsible for managing the connection in a thread-safe manner.

Configuring the Client
To configure SignalR on the client, our Web.Client project has to include two NuGet
package references:

• Microsoft.AspNetCore.SignalR.Client•
• Microsoft.AspNetCore.SignalR.Protocols.MessagePack•

In addition to these packages, the custom SharedHubConnection class was registered
as a singleton with the client’s service provider, enabling it as a resolvable service
through DI. This was initially discussed in “The Web.Client ConfigureServices Func‐
tionality” on page 113. Only a single instance of this service will exist for the lifetime
of the client app. This is an important detail as it shares a connection state with all of
the consuming components and pages. Next, we’ll look at the SharedHubConnection
implementation.

Consuming Real-Time Data on the Client | 181

https://oreil.ly/P1bXb
https://oreil.ly/oZLi1

Sharing a Hub Connection
The SharedHubConnection class is used by any component or page within the client
app that needs to talk to the SignalR server, regardless of whether the component
needs to push data to the server or whether the client subscribes to server events
or both. The SharedHubConnection.cs C# contains the logic for sharing a single
framework-provided HubConnection:

namespace Learning.Blazor;

public sealed partial class SharedHubConnection : IAsyncDisposable
{
 private readonly IServiceProvider _serviceProvider = null!;
 private readonly ILogger<SharedHubConnection> _logger = null!;
 private readonly CultureService _cultureService = null!;
 private readonly HubConnection _hubConnection = null!;
 private readonly SemaphoreSlim _lock = new(1, 1);
 private readonly HashSet<ComponentBase> _activeComponents = new();

 /// <summary>
 /// Indicates the state of the <see cref="HubConnection"/> to the server.
 /// </summary>
 public HubConnectionState State =>
 _hubConnection?.State ?? HubConnectionState.Disconnected;

 public SharedHubConnection(
 IServiceProvider serviceProvider,
 IOptions<WebApiOptions> options,
 CultureService cultureService,
 ILogger<SharedHubConnection> logger)
 {
 (_serviceProvider, _cultureService, _logger) =
 (serviceProvider, cultureService, logger);

 var notificationHub =
 new Uri($"{options.Value.WebApiServerUrl}/notifications");

 _hubConnection = new HubConnectionBuilder()
 .WithUrl(notificationHub,
 options =>
 {
 options.AccessTokenProvider = GetAccessTokenValueAsync;
 options.Headers.Add(
 "Accept-Language",
 _cultureService.CurrentCulture
 .TwoLetterISOLanguageName);
 })
 .WithAutomaticReconnect()
 .AddMessagePackProtocol()
 .Build();

182 | Chapter 6: Exemplifying Real-Time Web Functionality

 _hubConnection.Closed += OnHubConnectionClosedAsync;
 _hubConnection.Reconnected += OnHubConnectionReconnectedAsync;
 _hubConnection.Reconnecting += OnHubConnectionReconnectingAsync;
 }

 Task OnHubConnectionClosedAsync(Exception? exception)
 {
 _logger.LogHubConnectionClosed(exception);
 return Task.CompletedTask;
 }

 Task OnHubConnectionReconnectedAsync(string? message)
 {
 _logger.LogHubConnectionReconnected(message);
 return Task.CompletedTask;
 }

 Task OnHubConnectionReconnectingAsync(Exception? exception)
 {
 _logger.LogHubConnectionReconnecting(exception);
 return Task.CompletedTask;
 }

 async ValueTask IAsyncDisposable.DisposeAsync()
 {
 if (_hubConnection is not null)
 {
 _hubConnection.Closed -= OnHubConnectionClosedAsync;
 _hubConnection.Reconnected -= OnHubConnectionReconnectedAsync;
 _hubConnection.Reconnecting -= OnHubConnectionReconnectingAsync;

 await _hubConnection.StopAsync();
 await _hubConnection.DisposeAsync();
 }

 _lock?.Dispose();
 }
}

SharedHubConnection is a sealed partial class.

SharedHubConnection defines several fields that are used to help manage the
shared hub connection.

The SharedHubConnection constructor initializes supporting fields from the
defined parameters.

SharedHubConnection explicitly implements the IAsyncDisposable.Dispose
Async method.

Consuming Real-Time Data on the Client | 183

First off, notice that SharedHubConnection is an implementation of the IAsync
Disposable interface. This enables the SharedHubConnection class to clean up any
managed resources that need to be released asynchronously.

Then the class defines several fields that are initialized during construction (or
inline). They’re described as follows:

IServiceProvider _serviceProvider

The service provider from the client app.

ILogger<SharedHubConnection> _logger

A logger instance specific to SharedHubConnection.

CultureService _cultureService

Used to populate the “Accept-Language” HTTP header for requests made from
the hub connection.

HubConnection _hubConnection

The framework-provided representation of the client’s connection to the server’s
hub.

SemaphoreSlim _lock

An asynchronous locking mechanism used for thread-safe concurrent access.
This lock is used in the shared StartAsync method command that is detailed
later in this chapter.

The _logger field has access to several custom logging extension methods. These
extension methods call into cached delegates created from the framework-provided
LoggerMessage.Define factory methods. This is used as a performance optimization
to avoid creating a new delegate each time a log message is logged.

The connection state is represented by the underlying HubConnection.State as a
calculated property named State. When _hubConnection is null, the state is shown
as Disconnected.

Additional states include the following:

Connected

The client and server are connected.

Connecting

The connection is being established.

Reconnecting

The connection is being reconnected.

184 | Chapter 6: Exemplifying Real-Time Web Functionality

Next, the SharedHubConnection constructor assigns several fields from the construc‐
tor’s parameters. From the client’s configured options object, the Web API server
URL is used along with the "/notifications" route to instantiate the notification
hub Uri. The _hubConnection field is instantiated using the builder pattern and the
corresponding HubConnectionBuilder object.

Builder Pattern
The builder pattern is used to construct objects in a way that is more flexible than the
traditional constructor pattern. Self-describing methods are strewn fluently together
and called on a builder object. The consumer can construct (or build) the object by
calling the Build method.

The hub URL is used with the builder instance, and the hub connection has its
options configured through the WithUrl method overload. AccessTokenProvider is
assigned to a delegate used to get the contextual access token asynchronously. The
default request HTTP headers are updated, adding the "Accept-Language" header
with a value of the currently configured ISO two-letter language name. This ensures
that the SignalR server connection knows to return the appropriately localized con‐
tent to the connected client. The builder configures automatic reconnection and the
MessagePack protocol just before calling Build.

Using the _hubConnection instance, the Closed, Reconnected, and Reconnecting
events are subscribed to. The various connection states are communicated through
these events. Their corresponding event handlers are all fairly similar. The app condi‐
tionally logs their occurrence.

Finally, the DisposeAsync functionality unsubscribes from the _hubConnection
events and then cascades disposal of the connection and the locking mechanism
used for synchronization.

Shared hub connection authentication

The SharedHubConnection use is partial, and there are several other implemen‐
tations to consider. The GetAccessTokenValueAsync delegate was assigned when
building the _hubConnection instance, and that functionality is implemented in the
SharedHubConnection.Tokens.cs C# file:

namespace Learning.Blazor;

public sealed partial class SharedHubConnection
{
 private async Task<string?> GetAccessTokenValueAsync()
 {
 using (var scope = _serviceProvider.CreateScope())

Consuming Real-Time Data on the Client | 185

 {
 var tokenProvider =
 scope.ServiceProvider
 .GetRequiredService<IAccessTokenProvider>();
 var result =
 await tokenProvider.RequestAccessToken();

 if (result.TryGetToken(out var accessToken))
 {
 return accessToken.Value;
 }

 _logger.LogUnableToGetAccessToken(
 result.Status, result.RedirectUrl);

 return null;
 }
 }
}

The SharedHubConnection class was registered as a singleton, but the framework-
provided IAccessTokenProvider is a scoped service. This is why the constructor
couldn’t require IAccessTokenProvider directly; instead, it needs IServiceProvider.
With the _serviceProvider instance, a call to CreateScope is used to create a scope
in which we can resolve IAccessTokenProvider.

Normally, you will not need to use IServiceProvider directly.
The SharedHubConnection class is a singleton, and IAccessToken
Provider is a scoped service. IServiceProvider is used to resolve
IAccessTokenProvider when the SharedHubConnection object
starts communicating with a server.

With tokenProvider, we call RequestAccessToken. If the result has an access token,
it is returned. If GetAccessTokenValueAsync is unable to get accessToken, it is
logged, and null is returned. The access token is used to authenticate the connected
Blazor client with the server hub.

Shared hub connection initiation
Due to the shared nature of this class, the start functionality needs to be implemented
in a thread-safe way. Any consumer can safely call StartAsync to initiate the con‐
nection from the client to the server. This happens in the SharedHubConnection
.Commands.cs C# file:

namespace Learning.Blazor;

public sealed partial class SharedHubConnection
{

186 | Chapter 6: Exemplifying Real-Time Web Functionality

 public async Task StartAsync(CancellationToken token = default)
 {
 await _lock.WaitAsync(token);

 try
 {
 if (State is HubConnectionState.Disconnected)
 {
 await _hubConnection.StartAsync(token);
 }
 else
 {
 _logger.LogUnableToStartHubConnection(State);
 }
 }
 finally
 {
 _lock.Release();
 }
 }
}

The StartAsync method defines an optional cancellation token.

When a call to StartAsync is made, the SemaphoreSlim _lock variable has its
WaitAsync method called, which completes when the semaphore is entered. This
is an important detail because it alleviates the concerns of multiple components
calling StartAsync concurrently by ensuring that all callers execute sequentially.
In other words, imagine three components call StartAsync at the same time. This
asynchronous locking mechanism ensures that the first component to enter and start
_hubConnection is the only component that will call _hubConnection.StartAsync.
The other two components will log that they were unable to start the connection to
the server’s hub, as it was already started.

Shared hub connection chat

Next, let’s look at how SharedHubConnection implements the chat functionality. You
can see how this is defined in the SharedHubConnection.Chat.cs C# file:

namespace Learning.Blazor;

public sealed partial class SharedHubConnection
{
 /// <inheritdoc cref="HubClientMethodNames.JoinChat" />
 public Task JoinChatAsync(string room) =>
 _hubConnection.InvokeAsync(
 methodName: HubClientMethodNames.JoinChat, room);

 /// <inheritdoc cref="HubClientMethodNames.LeaveChat" />
 public Task LeaveChatAsync(string room) =>

Consuming Real-Time Data on the Client | 187

 _hubConnection.InvokeAsync(
 methodName: HubClientMethodNames.LeaveChat, room);

 /// <inheritdoc cref="HubClientMethodNames.PostOrUpdateMessage" />
 public Task PostOrUpdateMessageAsync(
 string room, string message, Guid? id = default) =>
 _hubConnection.InvokeAsync(
 methodName: HubClientMethodNames.PostOrUpdateMessage,
 room, message, id);

 /// <inheritdoc cref="HubClientMethodNames.ToggleUserTyping" />
 public Task ToggleUserTypingAsync(bool isTyping) =>
 _hubConnection.InvokeAsync(
 methodName: HubClientMethodNames.ToggleUserTyping, isTyping);

 /// <inheritdoc cref="HubServerEventNames.UserLoggedIn" />
 public IDisposable SubscribeToUserLoggedIn(
 Func<Notification<Actor>, Task> onUserLoggedIn) =>
 _hubConnection.On(
 methodName: HubServerEventNames.UserLoggedIn,
 handler: onUserLoggedIn);

 /// <inheritdoc cref="HubServerEventNames.UserLoggedOut" />
 public IDisposable SubscribeToUserLoggedOut(
 Func<Notification<Actor>, Task> onUserLoggedOut) =>
 _hubConnection.On(
 methodName: HubServerEventNames.UserLoggedOut,
 handler: onUserLoggedOut);

 /// <inheritdoc cref="HubServerEventNames.UserTyping" />
 public IDisposable SubscribeToUserTyping(
 Func<Notification<ActorAction>, Task> onUserTyping) =>
 _hubConnection.On(
 methodName: HubServerEventNames.UserTyping,
 handler: onUserTyping);

 /// <inheritdoc cref="HubServerEventNames.MessageReceived" />
 public IDisposable SubscribeToMessageReceived(
 Func<Notification<ActorMessage>, Task> onMessageReceived) =>
 _hubConnection.On(
 methodName: HubServerEventNames.MessageReceived,
 handler: onMessageReceived);
}

The JoinChatAsync method is an example of an operation that can be called
from the client and invokes a method on the server.

The SubscribeToUserLoggedIn method is an example of an event that is fired
from the server, and clients can listen by subscribing to them.

188 | Chapter 6: Exemplifying Real-Time Web Functionality

The chat functionality relies on two shared helper classes:

HubClientMethodNames

Defines method names that are invocable from a connected client on the server

HubServerEventNames

Defines event names (and parameter details) from the SignalR hub that a client
can subscribe to

The additional functionality is implemented using these classes. Each client method
delegates out to a corresponding overload of the _hubConnection.InvokeAsync
method, passing the appropriate method name and arguments. Meanwhile, each
server event is subscribed from an assigned function that acts as its callback handler.
This is possible using the appropriate _hubConnection.On overload. These subscrip‐
tions are represented as an IDisposable that is returned, and it’s the caller’s respon‐
sibility to unsubscribe by calling Dispose on any subscriptions it may have made.
Consuming components will be able to join and leave chat rooms, post and update
messages in said chat rooms, and share whether they’re currently typing. Likewise,
these components will be able to receive notifications when another user is typing,
when a user has logged in or out, and when a message has been received.

Shared hub connection tweets

The final bit of functionality that is implemented in this SharedHubConnection is
tweet streaming, and it’s defined in the SharedHubConnection.Tweets.cs C# file:

namespace Learning.Blazor;

public sealed partial class SharedHubConnection
{
 /// <inheritdoc cref="HubClientMethodNames.JoinTweets" />
 public Task JoinTweetsAsync() =>
 _hubConnection.InvokeAsync(
 methodName: HubClientMethodNames.JoinTweets);

 /// <inheritdoc cref="HubClientMethodNames.LeaveTweets" />
 public Task LeaveTweetsAsync() =>
 _hubConnection.InvokeAsync(
 methodName: HubClientMethodNames.LeaveTweets);

 /// <inheritdoc cref="HubClientMethodNames.StartTweetStream" />
 public Task StartTweetStreamAsync() =>
 _hubConnection.InvokeAsync(
 methodName: HubClientMethodNames.StartTweetStream);

 /// <inheritdoc cref="HubServerEventNames.StatusUpdated" />
 public IDisposable SubscribeToStatusUpdated(
 Func<Notification<StreamingStatus>, Task> onStatusUpdated) =>
 _hubConnection.On(

Consuming Real-Time Data on the Client | 189

 methodName: HubServerEventNames.StatusUpdated,
 handler: onStatusUpdated);

 /// <inheritdoc cref="HubServerEventNames.TweetReceived" />
 public IDisposable SubscribeToTweetReceived(
 Func<Notification<TweetContents>, Task> onTweetReceived) =>
 _hubConnection.On(
 methodName: HubServerEventNames.TweetReceived,
 handler: onTweetReceived);

 /// <inheritdoc cref="HubServerEventNames.InitialTweetsLoaded" />
 public IDisposable SubscribeToTweetsLoaded(
 Func<Notification<List<TweetContents>>, Task> onTweetsLoaded) =>
 _hubConnection.On(
 methodName: HubServerEventNames.InitialTweetsLoaded,
 handler: onTweetsLoaded);
}

The Tweet implementation relies on HubClientMethodNames to invoke hub con‐
nection methods, given their name and arguments.

Similarly, HubServerEventNames are used to subscribe to named events from the
server, given a handler.

By encapsulating the logic for each domain-specific feature, the corresponding
partial implementations of SharedHubConnection expose more meaningful meth‐
ods to the consumers. The framework-provided HubConnection, while used inter‐
nally within this class, is abstracted away. Instead, by using SharedHubConnection, a
consumer can call more explicitly named and meaningful methods.

Consuming Real-Time Data in Components
The only thing that is left to do is to consume the shared hub connection where
it’s needed in the consuming components. Each domain-specific feature, whether
it’s a small component or a page, will rely on SharedHubConnection to provide the
necessary functionality.

The SignalR real-time data powers three of our model app’s components:
NotificationComponent, Tweets, and Chat pages. The notification system is capable
of receiving notifications for the following events:

• When a user logs in or out of the app•
• When there’s an important weather alert for your current location, such as a•

severe weather warning
• If your email address has been part of a data breach (this refers to the “Have I•

Been Pwned” functionality of the app), as shown in Figure 6-4

190 | Chapter 6: Exemplifying Real-Time Web Functionality

Figure 6-4. A pwned notification

All notifications are dismissible, but only some are actionable. For example, a notifi‐
cation that informs you as to whether you’ve been part of a data breach provides a
link. If you decide to follow the link, it will take you to the /pwned subroute in the app
that will show you all of the data breaches your email is part of.

The app has a Tweets page dedicated to live Twitter content that’s streamed in real
time. We’re going to focus in depth on one of the consuming components. With that
knowledge, you will be able to review the others yourself. Let’s take a look at the chat
functionality.

The Chat component defines the @page directive, which means it’s a page. It’s naviga‐
ble at the /chat route. Consider the Chat.razor file:

@page "/chat/{room?}"
@attribute [Authorize]
@inherits LocalizableComponentBase<Chat>

<PageTitle>
 @Localizer["Chat"]
</PageTitle>

<AuthorizeView>
 @if (User is { Identity: { } } user)
 {
 <div class="is-hidden">@user.Identity.Name</div>
 }
</AuthorizeView>

 <div class="columns">
 <section class="column is-10 is-offset-1">
 <div class="field has-addons">

Consuming Real-Time Data on the Client | 191

 <div class="control is-fullwidth has-icons-left">
 <input class="input is-large" spellcheck="true"
 type="text" placeholder=@Localizer["ChatMessage"]
 @ref="_messageInput"
 @bind-value="@_message"
 @oninput="@InitiateDebounceUserIsTypingAsync"
 @onkeyup="@OnKeyUpAsync"
 autocomplete="off">

 <i class="fas">💭</i>

 </div>
 <div class="control">
 <a class="button is-info is-large"
 @onclick="@SendMessageAsync">
 @Localizer["Send"]

 </div>
 </div>

 <article class="panel is-info has-dotnet-scrollbar">
 <p class="panel-heading has-text-left">

 @Localizer["Messages"]

 @if (TryGetUsersTypingText(out var text))
 {
 MarkupString isTypingMarkup = new(text);

 @isTypingMarkup

 }

 </p>

 @foreach (var (id, message) in _messages.Reverse())
 {
 <ChatMessageComponent Message=@message
 IsEditable=@(OwnsMessage(message.UserName))
 EditMessage=@OnEditMessageAsync />
 }
 </article>
 </section>
</div>

The Chat page has a route template of "/chat/{room?}".

Each chat room has a single pair of inputs for the chat room message and a send
button.

192 | Chapter 6: Exemplifying Real-Time Web Functionality

When there are one or more users actively typing, we display specialized mes‐
sages to indicate this to participants in the chat room.

A collection of chat room messages are iterated over and passed to ChatMessage
Component.

The Chat page’s route template allows for an optional room parameter. This value is
implicitly bound to the component’s corresponding Room property. Route templates
are powerful, and we have a lot of flexibility. This allows users of our client app to
share and bookmark rooms. They can invite their friends and interact in real time.
For more information about route constraints, see Microsoft’s “ASP.NET Core Blazor
Routing and Navigation” documentation.

The chat room functionality enables users to edit messages they’ve sent; this is a nice
feature to have. It lets the chat user fix typos or update what they’re trying to express
as needed. Messages are, however, not persisted. This is intentional; every interaction
is live, and if you leave, so too do the messages. It imposes an either be in the moment
or don’t bother mentality. The progression of sending a message with a typo, from
correcting it to sending it, is an interactive experience. To visualize this, see Figures
6-5, 6-6, and 6-7.

Figure 6-5. Chat room message typo

Figure 6-6. Chat room message editing

Consuming Real-Time Data on the Client | 193

https://oreil.ly/397Vn
https://oreil.ly/397Vn

Figure 6-7. Chat room message edited

Programmatically speaking, not persisting messages makes the app a bit less complex.
The primary concern is the user’s ability to interact with the Chat room by creating or
updating their chat messages. The user enters their message in <input type="text">
and sends the message using the HTML elements. input has
its native spellcheck attribute set to true. This enables the element to provide
help to the user, ensuring the spelling accuracy of their messages. The user can
send a message using the Enter key. The send button is an explicit user request, as
opposed to the more passive or implicit nature of pressing the Enter key, but they’re
functionally equivalent.

As part of the real-time functionality, when the users in the same chat room are
typing a message, their client apps are debouncing their input.

What’s the Debounce Algorithm?
The debounce algorithm is a means of programmatically ensuring that only a single
event takes action regardless of the number of source events that occur within a set
amount of time. For example, if a user is typing a message, the app needs to imme‐
diately signify that they’re typing to others in the chat room. If the user continues
typing, we do not want to keep sending this message, because it could saturate the
network with noise. Instead, we’ll send a cancellation of the user’s typing status after
several hundred milliseconds of nontyping.

Most chat apps have this feature nowadays. It’s helpful to know when someone’s
responding to your message, but it can also be nerve-racking (or even worse, if the
ellipses are canceled and you never receive a message).

When the user first starts typing, a notification is triggered using SignalR to let
interested chat room participants know that the user is typing. Each time they type a
nonterminating key, after a specific amount of time like 750 milliseconds or so, the
app sends a cancellation. The UX is such that you can see not only that someone in
the chat room is typing but also their names. This is depicted in Figure 6-8.

194 | Chapter 6: Exemplifying Real-Time Web Functionality

Figure 6-8. The debounce state machine diagram

The Chat page maintains a .NET Dictionary<Guid, ActorMessage> named
_messages. This collection is tethered to the receiving of SignalR events from
NotificationHub on the server through the generic Notification<T> where T :
notnull and T represents the type for the Payload property. When communicated
as NotificationType.Chat, the T type is ActorMessage. An actor message is used
to represent the message from a user and their intent. These messages can reflect
a message in multiple ways, whether the user is editing a message or whether the
message is a general greeting. The messages are uniquely identifiable and immutable.
A message has a sense of ownership in that there’s a username associated with a
message. Consider the Actors.cs C# file:

namespace Learning.Blazor.Models;

public record class ActorMessage(
 Guid Id,
 string Text,
 string UserName,
 bool IsGreeting = false,
 bool IsEdit = false) : Actor(UserName);

public record class ActorAction(
 string UserName, bool IsTyping) : Actor(UserName);

public record class Actor(
 string UserName,
 string[]? Emails = null);

This file contains three record class definitions: one base Actor and two descend‐
ants, ActorAction and ActorMessage. Each message in the _messages collection is
iterated over in reverse order. This displays the messages in ascending order from
the time they were posted, which is common in all chat apps. The ActorAction
class sets the user’s typing status to either true or false. These message objects are

Consuming Real-Time Data on the Client | 195

passed to the custom <ChatMessageComponent>. This component is defined in the
ChatMessageComponent.razor file. Let’s have a look at that first:

<a id="@Message.Id"
 class="panel-block is-size-5 @_dynamicCss"

@onclick=@StartEditAsync>

 @Message.UserName

 <i class="fas fa-chevron-right" aria-hidden="true"></i>

 @{
 MarkupString messageMarkup = new(Message.Text);

 @messageMarkup

 @if (Message.IsEdit)
 {

 edited

 }
 }

@code {
 private string _dynamicCss
 {
 get
 {
 return string.Join(" ", GetStyles()).Trim();

 IEnumerable<string> GetStyles()
 {
 if (!IsEditable)
 yield return "is-unselectable";

 if (Message.IsGreeting)
 yield return "greeting";
 };
 }
 }

 [Parameter, EditorRequired]
 public bool IsEditable { get; set; }

 [Parameter, EditorRequired]
 public ActorMessage Message { get; set; } = null!;

196 | Chapter 6: Exemplifying Real-Time Web Functionality

 [Parameter, EditorRequired]
 public EventCallback<ActorMessage> EditMessage { get; set; }

 private async Task StartEditAsync()
 {
 if (IsEditable && EditMessage.HasDelegate)
 {
 await EditMessage.InvokeAsync(Message);
 }
 }
}

Each message is represented as an ... anchor
element.

The framework-provided MarkupString is used to render a C# string as HTML.

The component dynamically applies a style from the _dynamicCss calculated
property.

The StartEditAsync() method is used to signal to the parent Chat page that this
component is editing a message.

ChatMessageComponent is used to represent a single chat message. If the component
is created with IsEditable set to true, the user can edit the message within this
component. If a message has been edited before, it’s appropriately styled to indicate
that to the users of the chat room. When the user is not permitted to edit a message,
the is-unselectable style is applied.

Next, let’s explore how the Chat page is implemented as a few C# partial classes.
Consider the Chat.razor.cs C# file:

namespace Learning.Blazor.Pages
{
 public sealed partial class Chat : IAsyncDisposable
 {
 private const string DefaultRoomName = "public";

 private readonly Stack<IDisposable> _subscriptions = new();

 [Parameter]
 public string? Room { get; set; } = DefaultRoomName;

 [Inject]
 public SharedHubConnection HubConnection { get; set; } = null!;

 protected override async Task OnInitializedAsync()
 {
 await base.OnInitializedAsync();

Consuming Real-Time Data on the Client | 197

 _subscriptions.Push(
 HubConnection.SubscribeToMessageReceived(
 OnMessageReceivedAsync));
 _subscriptions.Push(
 HubConnection.SubscribeToUserTyping(
 OnUserTypingAsync));

 await HubConnection.StartAsync();
 await HubConnection.JoinChatAsync(
 Room ?? DefaultRoomName);
 }

 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender)
 {
 await _messageInput.FocusAsync();
 }
 }

 async ValueTask IAsyncDisposable.DisposeAsync()
 {
 if (HubConnection is not null)
 {
 await HubConnection.LeaveChatAsync(
 Room ?? DefaultRoomName);
 }

 while (_subscriptions.TryPop(out var disposable))
 {
 disposable.Dispose();
 }
 }
 }
}

The Chat implementation maintains a Stack<IDisposable> named
_subscriptions.

The ShareHubConnection HubConnection property is injected.

The class provides an override of the OnInitializedAsync method.

The OnAfterRenderAsync lifecycle event method is used to set the focus on the
message input.

An explicit implementation of IAsyncDisposable.DisposeAsync performs
cleanup.

198 | Chapter 6: Exemplifying Real-Time Web Functionality

The first implementation partial that we observe of the Chat component class
implements IAsyncDisposable. The component exposes a [Parameter] public

string? Room property. This is automatically bound (meaning its value is provided
by the framework from a corresponding segment in the browser’s URL) to the
navigation route. In other words, if the user visits /chat/MyCoolChatRoom, this Room
property will have a value of "MyCoolChatRoom". When there isn’t a room name
specified, the default room name of "public" is used.

When the component is initialized, it subscribes to the following events:

HubConnection.SubscribeToMessageReceived

The OnMessageReceivedAsync method is the handler.

HubConnection.SubscribeToUserTyping

The OnUserTypingAsync method is the handler.

When the component is disposed of, it will leave the current chat room but issue
the appropriate HubConnection.LeaveChatAsync method call. There’s a stack of
_subscriptions that will be unsubscribed from as well. The next Chat implementa‐
tion partial is defined in the Chat.razor.Messages.cs C# file:

namespace Learning.Blazor.Pages
{
 public sealed partial class Chat
 {
 private readonly Dictionary<Guid, ActorMessage> _messages = new();

 private Guid? _messageId = null!;
 private string? _message = null!;
 private bool _isSending = false;
 private ElementReference _messageInput;

 bool OwnsMessage(string user) => User?.Identity?.Name == user;

 Task OnMessageReceivedAsync(Notification<ActorMessage> message) =>
 InvokeAsync(
 async () =>
 {
 _messages[message.Payload.Id] = message;

 StateHasChanged();

 await JavaScript.ScrollIntoViewAsync(
 $"[id='{message.Payload.Id}']");
 });

 Task OnKeyUpAsync(KeyboardEventArgs args)
 {

Consuming Real-Time Data on the Client | 199

 if (_isSending)
 {
 return Task.CompletedTask;
 }

 return args switch
 {
 { Key: "Enter" } => SendMessageAsync(),
 _ => Task.CompletedTask
 };
 }

 async Task SendMessageAsync()
 {
 if (_isSending || string.IsNullOrWhiteSpace(_message))
 {
 return;
 }

 try
 {
 _isSending = true;

 await HubConnection.PostOrUpdateMessageAsync(
 Room ?? DefaultRoomName, _message, _messageId);

 _message = null;
 _messageId = null;
 }
 finally
 {
 _isSending = false;
 }
 }

 async Task OnEditMessageAsync(ActorMessage message)
 {
 if (!OwnsMessage(message.UserName))
 {
 return;
 }

 _messageId = message.Id;
 _message = message.Text;

 await _messageInput.FocusAsync();
 }
 }
}

200 | Chapter 6: Exemplifying Real-Time Web Functionality

_messages are represented as a collection of key/value pairs.

The OnMessageReceivedAsync method is the event handler for when messages
are received from the hub connection.

When the user is typing and they lift their key, the OnKeyUpAsync method is fired.

To send a message, the SendMessageAsync method is used.

When the chat room user owns a message, they can start editing the message
with the OnEditMessageAsync method.

The Chat/Messages implementation is all about how messages are managed. From
the collection of _messages to a single _message and _messageId, this class con‐
tains class-scoped fields for maintaining the state of chat messages. The _isSending
value is used to signify that a message is being sent. _messageInput is a framework-
provided ElementReference. When the component is rendered for the first time,
_messageInput is focused on using the FocusAsync extension method.

The Chat.OwnsMessage method accepts a user parameter and compares it to the cur‐
rent user in context. This prevents anyone from editing messages that they don’t have
ownership of. When a message is received, the OnMessageReceivedAsync method is
called. Since this can happen at any time, the method needs to call StateHasChanged.
The _messages collection is updated with the incoming message and a JavaScript
call to the ScrollIntoViewAsync method given the Id of the message.Payload. This
is a JavaScript interop call using a named extension method pattern.

As the user types their chat messages, the OnKeyUpAsync method is invoked. If the
user is currently sending a message as determined by the _isSending bit, it’s a NOOP
(a no operation, meaning it does nothing). However, when the user presses the Enter
key, the message is sent. The SendMessageAsync method early exits if a message is
already being sent or if there is no message at all. When there is a message to send,
the HubConnection.PostOrUpdateMessageAsync method is called.

If the user decides to edit a message, the OnEditMessageAsync method first ensures
that the user owns the message. _message and _messageId are assigned from the
message being edited, and focus is returned to the message input. The final bit of
Chat functionality is that of the debounce implementation. For that, take a look at the
Chat.razor.Debounce.cs C# file:

namespace Learning.Blazor.Pages
{
 public sealed partial class Chat
 {
 private readonly HashSet<Actor> _usersTyping = new();

Consuming Real-Time Data on the Client | 201

 private readonly SystemTimerAlias _debounceTimer = new()
 {
 Interval = 750,
 AutoReset = false
 };

 private bool _isTyping = false;

 public Chat() =>
 _debounceTimer.Elapsed += OnDebounceElapsed;

 Task InitiateDebounceUserIsTypingAsync()
 {
 _debounceTimer.Stop();
 _debounceTimer.Start();

 return SetIsTypingAsync(true);
 }

 Task OnUserTypingAsync(Notification<ActorAction> actorAction) =>
 InvokeAsync(() =>
 {
 var (_, (user, isTyping)) = actorAction;
 _ = isTyping
 ? _usersTyping.Add(new(user))
 : _usersTyping.Remove(new(user));

 StateHasChanged();
 });

 Task SetIsTypingAsync(bool isTyping)
 {
 if (_isTyping && isTyping)
 {
 return Task.CompletedTask;
 }

 return HubConnection.ToggleUserTypingAsync(
 _isTyping = isTyping);
 }

 bool TryGetUsersTypingText(
 [NotNullWhen(true)] out string? text)
 {
 var ut = _usersTyping
 ?.Select(a => a.UserName)
 ?.ToArray();

 text = ut?.Length switch
 {

202 | Chapter 6: Exemplifying Real-Time Web Functionality

 0 or null => null,
 1 => Localizer["UserIsTypingFormat", ut[0]],
 2 => Localizer["TwoUsersAreTypingFormat", ut[0], ut[1]],
 _ => Localizer["MultiplePeopleAreTyping"]
 };

 return text is not null;
 }

 async void OnDebounceElapsed(object? _, ElapsedEventArgs e) =>
 await SetIsTypingAsync(false);
 }
}

The debounce implementation maintains HashSet<Actor> _usersTyping.

The Chat constructor wires up the _debounceTimer.Elapsed event.

The InitiateDebounceUserIsTypingAsync method is responsible for restarting
_debounceTimer and calling SetIsTypingAsync with true.

The OnUserTypingAsync method handles the event that is fired when people in
the chat room are typing.

The SetIsTypingAsync method conditionally toggles a value representing the
state of whether the user is typing.

The TryGetUsersTypingText helper method gets a message to display when
users are typing.

After the allotted amount of debounce time, the OnDebounceElapsed method is
called, thus clearing the typing status.

The Chat/Debounce implementation manages the collection of _usersTyping,
_debounceTimer (which comes from the System.Timers.Timer namespace), and a
value indicating whether or not the user _isTyping.

When the OnUserTypingAsync method is called, the Notification<ActorAction>
parameter provides a value as to whether the user is typing. The user is either added
or removed from the _usersTyping collection. The TryGetUsersTypingText helper
message relies on the current state of the _usersTyping collection and Localizer
to format messages. For example, if my friends Carol and Chad were both typing a
message, the UI would look similar to Figure 6-9.

Consuming Real-Time Data on the Client | 203

Figure 6-9. The chat room with multiple people typing

Summary
In this chapter, you learned how to implement real-time web functionality using
ASP.NET Core SignalR. You saw how to cleanly separate domain responsibilities
making extensive use of C# partial classes. We walked through the source code
for a feature-rich server-side SignalR implementation, complete with Hub and IHub
Context<T> within a BackgroundService. You learned possible ways to create real-
time alerts and notifications, a messaging system for live-user interactions, and a
joinable active Twitter stream. Finally, you learned how to consume this data from
our Blazor WebAssembly app while focusing on a feature-rich chat app.

In the next chapter, you’ll learn a valid use case for C# source generators. You’ll
see how well-known JavaScript Web APIs can be used to source generate extension
method implementations, fulfilling JavaScript interop functionality. You’ll learn how
this specifically applies to the localStorage JavaScript API.

204 | Chapter 6: Exemplifying Real-Time Web Functionality

CHAPTER 7

Using Source Generators

In this chapter, we’ll explore how the .NET developer platform enables you to use C#
source generators for your Blazor apps. This is a compelling feature because it makes
for a great developer experience and alleviates the concerns of writing repetitive
code, allowing you to focus on more interesting problems. In fact, you can use a
source generator to take advantage of JavaScript APIs without needing to write any
JavaScript interop code yourself. We’ll cover how a well-defined JavaScript API can be
used to generate code using an example source generator.

What Are Source Generators?
A source generator is a component that C# developers can write that allows you to do
two things:

1. Retrieve a compilation object that represents all user code that is being compiled1.
2. Generate C# source files that can be added to a compilation object during2.

compilation

Essentially, you can write source generator code so it generates more code. Why
would you do this? As a developer, you might notice that you’re writing the same
code over and over again. Or, maybe you write a lot of boilerplate code or repetitive
programming idioms. When this happens, it’s time to consider automation and using
source generators to write code on your behalf. Not only will it make your work
easier, but it will help reduce human errors in your code.

This is where a C# source generator comes in. A C# source generator hooks into the
C# compilation context as an analyzer and optionally emits source code that compiles
within the same context. The resulting code is both a combination of user-written
code and code that was automatically generated.

205

Let’s consider the code for JavaScript interop. Every time I have to write JavaScript
interop code, I have to take the following steps:

1. Use an API reference document to observe the target JavaScript API and infer the1.
correct consumption of the JavaScript API

2. Create an extension method that extends the IJSRuntime or IJSInProcessJRun2.
time interface to expose the JavaScript API

3. Delegate out the interop call to the interface I’m extending, mapping parameters3.
and return values from the JavaScript API to the C# method

4. Use the extension method to call the JavaScript interop functionality4.

This gets repetitive and is thus a good candidate for writing and using a source
generator. With Blazor WebAssembly, the framework-provided IJSRuntime is also an
implementation of the IJSInProcessRuntime type. This interface exposes synchro‐
nous JavaScript interop methods. This is because WebAssembly has its corresponding
JavaScript implementation in the same process, so things can happen synchronously.
This has less overhead than using the async ValueTask alternatives, and it’s consid‐
ered an optimization for Blazor WebAssembly apps over the Blazor Server hosting
model.

Later in this chapter, you’ll learn about the blazorators library, which provides a
source generator that can be used to generate JavaScript interop code for Blazor
apps. It also produces libraries that are the result of source generation. This source
generator relies on the APIs of the C# compiler platform (Roslyn). It has a genera‐
tor that implements the Microsoft.CodeAnalysis.ISourceGenerator interface. This
interface is used by the compiler to generate source code, and we’re free to implement
that how you see fit. In the next section, you’ll see an example JavaScript API that is
source generated into a reusable class library.

Building a Case for Source Generators
Many apps require some sort of persistence for the user-state. Luckily all modern
browsers support storage, which is a means for persisting user-state directly in the
browser. The Blazor.LocalStorage.WebAssembly NuGet package is created by the
blazorators source generator. It’s a class library that exposes a set of powerful APIs,
and it relies on JavaScript but doesn’t contain any JavaScript itself. It simply delegates
to the browser’s localStorage API.

The ECMAScript standard specifies many well-known and supported Web APIs as
well as DOM and Browser Object Model (BOM) APIs.

206 | Chapter 7: Using Source Generators

https://oreil.ly/wEeFJ

Blazor is responsible for exclusively managing the DOM, so it’s
recommended to avoid source-generating DOM-specific JavaScript
APIs. This is an important detail because having more than one bit
of code working on the same API can be conflictual and lead to
unusual behavior.

Let’s focus on the Web APIs, which are the APIs that are exposed to JavaScript. The
term Web API here is not to be confused with HTTP Web APIs but instead refers
to APIs that are native to JavaScript. One such API is that of window.localStorage.
This is one implementation of the Storage API. Local storage allows a website to
persist data across browser sessions, and it is great for user preferences and things
of that nature. The localStorage API doesn’t require a secure context, and the
content is stored on the client browser and is visible to the user through the browser’s
developer tools.

The API surface area of window.localStorage is described in Table 7-1.

Table 7-1. Local storage API table

Method name Parameters Return type

clear none void

removeItem DOMString keyName void

getItem DOMString keyName DOMString | null

setItem DOMString keyName, DOMString keyValue void

key number index DOMString | null

length none number

Blazor JavaScript interop has a canonical example in the localStorage JavaScript
API. It’s not uncommon to see various implementations of this in Blazor apps. This
code becomes repetitive and can be tedious, time-consuming, and error-prone to
maintain. In the next section, we’ll discuss how the blazorators source generator
can create the appropriate JavaScript interop code for the localStorage API using
TypeScript declarations. To expose this JavaScript API to the Razor component
library or a Blazor WebAssembly app, you need a reference to the IJSRuntime or
IJSInProcessRuntime implementations and delegate JavaScript interop calls on the
native localStorage API to provide its functionality.

As explained in “Single-Page Applications, Redefined” on page 6, TypeScript provides
a static type system for JavaScript. Types can be defined in a type declaration file.
The blazorators source generator relies on TypeScript type declarations. For common
JavaScript APIs, type declaration information is publicly available on the TypeScript
GitHub repository. The type declarations are fetched and read by the source gen‐
erator. The source generator parses the types from the lib.dom.d.ts file and uses

Building a Case for Source Generators | 207

https://oreil.ly/fJ8m0
https://oreil.ly/KFsKq

the custom JSAutoInterop attribute to generate the corresponding JavaScript code.
The types in the lib.dom.d.ts file are stable, as changes are infrequent. The source
generator is capable of converting the types from JavaScript into their corresponding
C# shapes.

To help visualize this process, consider Figure 7-1.

Figure 7-1. Source generator block diagram

The type declarations are requested from an HTTP GET call where the source gener‐
ator determines what C# code to output. The Storage interface from the lib.dom.d.ts
file resembles the following TypeScript code and is used to generate the correspond‐
ing C# code:

interface Storage {

 readonly length: number;

 clear(): void;
 getItem(key: string): string | null;
 key(index: number): string | null;
 removeItem(key: string): void;
 setItem(key: string, value: string): void;
}

The implementations of this interface will provide a read-only length property that
returns the number of items in Storage. Implementations will also provide the
common functionality of clear, getItem, key, removeItem, and setItem. The source
generator parses this interface into a C# object that describes the interface. The source
generator dynamically creates the JSAutoGenericInterop attribute. The attribute
is discovered by the source generator, and it’s converted into generator options
using the metadata from the attribute’s values. The source generator will recognize
the desired TypeName and corresponding implementation from the Implementation
value.

At compile time, when the source generator detects the JSAutoGenericInterop
attribute, it will look up the TypeName and Implementation values. The source gener‐
ator will then generate the JavaScript interop code for the Storage interface. The
source generator parses the TypeScript declarations and has the logic to convert these
methods into JavaScript interop extension methods. In the next section, I’ll show you
how to implement the localStorage API as a reusable class library.

208 | Chapter 7: Using Source Generators

C# Source Generators in Action
Now that you know how C# source generators work, I’ll show you how you can use
them in your Blazor app development. While we were building a use case for source
generators, we saw that TypeScript’s type declarations define APIs, and the source
generator could use this information to generate the appropriate JavaScript interop
code. You could choose to write your own source generator, or you could use the
blazorators source generator.

Source Generating the localStorage API
What if I told you that a C# source generator could be used to generate an entire
library with corresponding JavaScript interop code—would you believe me? It’s true!
As an example, I’ve created the Blazor.SourceGenerator project, which does just
this. It’s a C# source generator that can be used to generate JavaScript interop code
based on well-known APIs.

The Blazor.LocalStorage.WebAssembly NuGet package contains only the following
code, defined in the ILocalStorageService.cs C# file:

namespace Microsoft.JSInterop;

[JSAutoGenericInterop(
 TypeName = "Storage",
 Implementation = "window.localStorage",
 Url = "https://developer.mozilla.org/docs/Web/API/Window/localStorage",
 GenericMethodDescriptors = new[]
 {
 "getItem",
 "setItem:value"
 })]
public partial interface ILocalStorageService
{
}

The Blazor.SourceGenerator project source generates a ton of code on your
behalf. The only handwritten code in this project is the preceding 14 lines. This
code designates itself into the Microsoft.JSInterop namespace, making all of the
source-generated functionality available to any consumer who uses types from this
namespace. The interface is partial as it keeps the user-defined code separate from
the source-generated code. It uses JSAutoGenericInteropAttribute to specify the
following metadata:

TypeName = "Storage"

This sets the target type name to Storage.

C# Source Generators in Action | 209

https://oreil.ly/Wymlh
https://oreil.ly/Lo5vG
https://oreil.ly/pz6H1

Implementation = "window.localStorage"

This expresses how to locate the implementation of the specified type from the
globally scoped window object; this is the localStorage implementation.

Url

This sets the URL for the implementation; it’s used by the source generator to
automatically create code comments for the APIs it generates.

GenericMethodDescriptors

These descriptors are used to reason about which methods should be source
generated using generic return types or generic parameters. By specifying the
"getItem" method, its return type will be a generic TValue type. Likewise,
specifying "setItem:value" will instruct the parameter with a name of value
as a generic TValue type.

There is a lot of descriptive metadata that can be inferred from this decorative
attribute. When compiled, the Blazor.SourceGenerators project will recognize this
file and source generate the corresponding localStorage JavaScript interop exten‐
sion methods on ILocalStorageService. The file needs to also be a public partial
interface.

The resulting generated C# code now appears in the ILocalStorageService.g.cs C# file:

using Blazor.Serialization.Extensions;
using System.Text.Json;

#nullable enable
namespace Microsoft.JSInterop;

/// <summary>
/// Source generated interface definition of the <c>Storage</c> type.
/// </summary>
public partial interface ILocalStorageService
{
 /// <summary>
 /// Source generated implementation of
 /// <c>window.localStorage.length</c>.
 /// <a href=
 /// "https://developer.mozilla.org/docs/Web/API/Storage/length">
 /// </summary>
 double Length { get; }

 /// <summary>
 /// Source generated implementation of
 /// <c>window.localStorage.clear</c>.
 /// <a href=
 /// "https://developer.mozilla.org/docs/Web/API/Storage/clear">
 /// </summary>
 void Clear();

210 | Chapter 7: Using Source Generators

https://oreil.ly/sWMpG

 /// <summary>
 /// Source generated implementation of
 /// <c>window.localStorage.getItem</c>.
 /// <a href=
 /// "https://developer.mozilla.org/docs/Web/API/Storage/getItem">
 /// </summary>
 TValue? GetItem<TValue>(
 string key,
 JsonSerializerOptions? options = null);

 /// <summary>
 /// Source generated implementation of
 /// <c>window.localStorage.key</c>.
 /// <a href=
 /// "https://developer.mozilla.org/docs/Web/API/Storage/key">
 /// </summary>
 string? Key(double index);

 /// <summary>
 /// Source generated implementation of
 /// <c>window.localStorage.removeItem</c>.
 /// <a href=
 /// "https://developer.mozilla.org/docs/Web/API/Storage/removeItem">
 /// </summary>
 void RemoveItem(string key);

 /// <summary>
 /// Source generated implementation of
 /// <c>window.localStorage.setItem</c>.
 /// <a href=
 /// "https://developer.mozilla.org/docs/Web/API/Storage/setItem">
 /// </summary>
 void SetItem<TValue>(
 string key,
 TValue value,
 JsonSerializerOptions? options = null);
}

The Length method returns the length of the underlying array in the local
Storage implementation.

The Clear method clears localStorage.

The GetItem method returns the item for the corresponding key in the generic
shape it’s expecting.

The Key method returns the key at the corresponding index in localStorage.

C# Source Generators in Action | 211

The RemoveItem method removes the item for the corresponding key in local
Storage.

The SetItem method sets the item for the corresponding key in localStorage.

Since this is a partial interface, the source generator will generate ILocalStorage
Service. The corresponding implementation is also source generated. Consumers
of the generated code use the methods created on the ILocalStorageService type
to access the localStorage API. This code is the synchronous alternative to the
asynchronous code generated by the Blazor.LocalStorage.Server NuGet package.
The Blazor.LocalStorage.WebAssembly NuGet package is a class library that relies
on the Blazor.SourceGenerators project. The advantages of the source generating
this code are immense. With a bit of declarative handwritten C#, entire libraries can
be source generated, and these libraries can be used by any Razor project or Blazor
WebAssembly project.

ILocalStorageService will be exposed through the framework’s DI system. This
interface is generated using the knowledge of the TypeName and Implementation
properties. TypeName is the name of the type that will be exposed to the consumer
of the generated code. Implementation is the name of the JavaScript type that will
be used to implement the ILocalStorageService interface. This is based on the
localStorage Web API. Here is the source-generated LocalStorage implementation,
defined in the source-generated LocalStorageService.g.cs C# file:

#nullable enable

using Blazor.Serialization.Extensions;
using Microsoft.JSInterop;
using System.Text.Json;

namespace Microsoft.JSInterop;

/// <inheritdoc />
internal sealed class LocalStorageService : ILocalStorageService
{
 private readonly IJSInProcessRuntime _javaScript = null;

 /// <inheritdoc />
 double ILocalStorageService.Length =>
 _javaScript.Invoke<double>(
 "eval",
 new object[1]
 {
 "window.localStorage.length"
 });

 public LocalStorageService(IJSInProcessRuntime javaScript)

212 | Chapter 7: Using Source Generators

https://oreil.ly/bADBx

 {
 _javaScript = javaScript;
 }

 /// <inheritdoc />
 void ILocalStorageService.Clear()
 {
 _javaScript.InvokeVoid(
 "window.localStorage.clear");
 }

 /// <inheritdoc />
 TValue? ILocalStorageService.GetItem<TValue>(
 string key,
 JsonSerializerOptions? options)
 {
 return _javaScript.Invoke<string>(
 "window.localStorage.getItem",
 new object[1]
 {
 key
 })
 .FromJson<TValue>(options);
 }

 /// <inheritdoc />
 string? ILocalStorageService.Key(double index)
 {
 return _javaScript.Invoke<string>(
 "window.localStorage.key",
 new object[1]
 {
 index
 });
 }

 /// <inheritdoc />
 void ILocalStorageService.RemoveItem(string key)
 {
 _javaScript.InvokeVoid(
 "window.localStorage.removeItem",
 key);
 }

 /// <inheritdoc />
 void ILocalStorageService.SetItem<TValue>(
 string key,
 TValue value,
 JsonSerializerOptions? options)
 {
 _javaScript.InvokeVoid(
 "window.localStorage.setItem",

C# Source Generators in Action | 213

 key,
 value.ToJson<TValue>(options));
 }
}

The Length property returns the number of items in localStorage.

The LocalStorage constructor takes IJSInProcessRuntime as a parameter.

The Clear method clears localStorage by calling the clear JavaScript method.

The GetItem method returns the item for the corresponding key in local
Storage.

The Key method returns the key at the given index in localStorage.

The RemoveItem method removes the item for the corresponding key in local
Storage.

The SetItem method sets the item for the corresponding key in localStorage.

The interface supports both generics and customizable serialization with Json
SerializerOptions. JsonSerializerOptions are used to control how the type of
TValue in the GetItem method is serialized. The options are optional and if not
provided, the default serialization will be used.

It’s important to note that this is an internal sealed class and that it is an explicit
implementation of the ILocalStorageService interface. This is done to ensure that
the LocalStorageService implementation is not directly exposed to the consumer
of the generated code but instead only to the abstraction. The functionality will be
shared with the consumer through the native .NET DI mechanism, and that code is
also source generated.

The implementation relies on the IJSInProcessRuntime type to perform JavaScript
interop. From the given TypeName and corresponding Implementation, the following
code is also generated:

ILocalStorageService.g.cs
The partial interface for the corresponding Storage Web API surface area

LocalStorageService.g.cs
The internal sealed implementation of the ILocalStorageService interface

LocalStorageServiceCollectionExtensions.g.cs
Extension methods to add the ILocalStorageService service to the DI IService
Collection

214 | Chapter 7: Using Source Generators

The following is a source-generated LocalStorageServiceCollectionExtensions.g.cs C#
file:

using Microsoft.JSInterop;

namespace Microsoft.Extensions.DependencyInjection;

/// <summary></summary>
public static class LocalStorageServiceCollectionExtensions
{
 /// <summary>
 /// Adds the <see cref="ILocalStorageService" /> service to
 /// the service collection.
 /// </summary>
 public static IServiceCollection AddLocalStorageServices(
 this IServiceCollection services) =>
 services.AddSingleton<IJSInProcessRuntime>(serviceProvider =>
 (IJSInProcessRuntime)serviceProvider.
 GetRequiredService<IJSRuntime>())
 .AddSingleton<ILocalStorageService, LocalStorageService>();
}

The AddLocalStorageServices method takes IServiceCollection as a
parameter.

The AddLocalStorageServices method returns IServiceCollection with the
ILocalStorageService service added and the dependent framework-provided
IJSInProcessRuntime as well.

This is called in the Web.Client’s WebAssemblyHostBuilderExtensions class to regis‐
ter the ILocalStorageService service with the DI IServiceCollection. Putting this
all together, the Blazor.LocalStorage.WebAssembly NuGet package is less than 15
lines of handwritten code and the rest is generated, providing a fully functioning
JavaScript interop implementation that is a DI-ready service. The service is registered
as a singleton, and the ILocalStorageService interface is exposed to the consumer
of the generated code. In the next section, I’ll explain how the source generator can
be used to create an entirely different library for the Geolocation JavaScript API.

Source Generating the Geolocation API
Geolocation information can be immensely useful, and it can enhance the UX of
your app. For example, you could use it to tell the user the location of the nearest
store, or you could use it to give the weather for the user’s location. It’s handy,
but you need to ask the user for permission to share their geolocation with your
app. The source generator project I introduced to you in the previous section also
generates the Blazor.Geolocation.WebAssembly NuGet package. This package is
used to access the Geolocation API in the browser. This API is a bit different from

C# Source Generators in Action | 215

the localStorage API as it doesn’t require generics or custom serialization, but it
does require bidirectional JavaScript interop, which is a great example to learn from.

The JavaScript API for the Geolocation API is exposed through the window
.navigator.geolocation JavaScript object. The Geolocation API requires a secure
context, meaning that the browser will natively prompt the user for permission to use
the location services. The user has a choice, and if they choose “no,” this functionality
cannot be used. If the user selects “allow,” the browser will then enable the use of
this feature. In a secure context, the browser is required to use the HTTPS protocol.
The API is defined as follows according to the TypeScript interface declaration, again
found in the lib.dom.d.ts file:

interface Geolocation {
 clearWatch(watchId: number): void;

 getCurrentPosition(
 successCallback: PositionCallback,
 errorCallback?: PositionErrorCallback | null,
 options?: PositionOptions): void;

 watchPosition(
 successCallback: PositionCallback,
 errorCallback?: PositionErrorCallback | null,
 options?: PositionOptions): number;
}

All of the types can be found in the lib.dom.d.ts file. The Geolocation definition is
where things get a bit interesting. Sure, the source generator can generate this API
much like was done with the local storage bits, but this time the generator needs to
do a bit more work. The following types need to also be evaluated and potentially
generated:

• PositionCallback•
• PositionErrorCallback•
• PositionOptions•

Let’s start first with the two callbacks. PositionCallback is a callback that is called
when the getCurrentPosition or watchPosition methods are called. The callbacks
are defined in TypeScript as follows:

interface PositionCallback {
 (position: GeolocationPosition): void;
}

interface PositionErrorCallback {
 (positionError: GeolocationPositionError): void;
}

216 | Chapter 7: Using Source Generators

Each callback is an interface that defines a delegate or the method signature of
the callback. The source generator also has to then understand and source generate
the GeolocationPosition and GeolocationPositionError types. These types are
defined in TypeScript as follows:

interface GeolocationPosition {
 readonly coords: GeolocationCoordinates;
 readonly timestamp: DOMTimeStamp;
}

interface GeolocationPositionError {
 readonly code: number;
 readonly message: string;
 readonly PERMISSION_DENIED: number;
 readonly POSITION_UNAVAILABLE: number;
 readonly TIMEOUT: number;
}

The GeolocationPosition type has two properties, coords and timestamp. The
coords property is an interface that defines the GeolocationCoordinates type. The
timestamp property is a DOMTimeStamp type. The DOMTimeStamp type is a number type,
and its value is the number of milliseconds elapsed since the Unix Epoch (January
1, 1970) as Coordinated Universal Time (UTC). The source generator will generate
readonly properties for DOMTimeStamp types that expose a .NET DateTime with the
UTC conversion as a convenience. The GeolocationCoordinates type is defined as
follows:

interface GeolocationCoordinates {
 readonly accuracy: number;
 readonly altitude: number | null;
 readonly altitudeAccuracy: number | null;
 readonly heading: number | null;
 readonly latitude: number;
 readonly longitude: number;
 readonly speed: number | null;
}

Finally, the source generator will recognize the PositionOptions type, which is
defined in TypeScript as follows:

interface PositionOptions {
 enableHighAccuracy?: boolean;
 maximumAge?: number;
 timeout?: number;
}

The source generator has a lot of code to generate. Let’s look at how this is achieved.
The Blazor.Geolocation.WebAssembly NuGet package contains two handwritten
files. The first is the IGeolocationService.cs C# file that we’ll look at now, and the
second is a JavaScript file, which we’ll see a bit later:

C# Source Generators in Action | 217

namespace Microsoft.JSInterop;

[JSAutoInterop(
 TypeName = "Geolocation",
 Implementation = "window.navigator.geolocation",
 Url = "https://developer.mozilla.org/docs/Web/API/Geolocation")]
public partial interface IGeolocationService
{
}

Again, the library defines a partial interface. TypeName is set to "Geolocation",
which is the name of the JavaScript API. Implementation is set to "window
.navigator.geolocation", which is the JavaScript API that the library exposes. The
Url is set to the URL of the JavaScript API documentation. The source generator will
generate the following IGeolocationService.g.cs C# interface:

#nullable enable
namespace Microsoft.JSInterop;

/// <summary>
/// Source generated interface definition of the <c>Geolocation</c> type.
/// </summary>
public partial interface IGeolocationService
{
 /// <summary>
 /// Source generated implementation of
 /// <c>window.navigator.geolocation.clearWatch</c>.
 /// <a href=
 /// "https://developer.mozilla.org/docs/Web/API/Geolocation/clearWatch">
 ///
 /// </summary>
 void ClearWatch(double watchId);

 /// <summary>
 /// Source generated implementation of
 /// <c>window.navigator.geolocation.getCurrentPosition</c>.
 /// </summary>
 /// <param name="component">
 /// The calling Razor (or Blazor) component.
 /// </param>
 /// <param name="onSuccessCallbackMethodName">
 /// Expects the name of a <c>"JSInvokableAttribute"</c> C# method
 /// with the following <c>System.Action{GeolocationPosition}"</c>.
 /// </param>
 /// <param name="onErrorCallbackMethodName">
 /// Expects the name of a <c>"JSInvokableAttribute"</c> C# method
 /// with the following <c>System.Action{GeolocationPositionError}"</c>.
 /// </param>
 /// <param name="options">The <c>PositionOptions</c> value.</param>

218 | Chapter 7: Using Source Generators

 void GetCurrentPosition<TComponent>(
 TComponent component,
 string onSuccessCallbackMethodName,
 string? onErrorCallbackMethodName = null,
 PositionOptions? options = null)
 where TComponent : class;

 /// <summary>
 /// Source generated implementation of
 /// <c>window.navigator.geolocation.watchPosition</c>.
 /// </summary>
 /// <param name="component">
 /// The calling Razor (or Blazor) component.
 /// </param>
 /// <param name="onSuccessCallbackMethodName">
 /// Expects the name of a <c>"JSInvokableAttribute"</c> C# method
 /// with the following <c>System.Action{GeolocationPosition}"</c>.
 /// </param>
 /// <param name="onErrorCallbackMethodName">
 /// Expects the name of a <c>"JSInvokableAttribute"</c> C# method
 /// with the following <c>System.Action{GeolocationPositionError}"</c>.
 /// </param>
 /// <param name="options">The <c>PositionOptions</c> value.
 /// </param>
 double WatchPosition<TComponent>(
 TComponent component,
 string onSuccessCallbackMethodName,
 string? onErrorCallbackMethodName = null,
 PositionOptions? options = null)
 where TComponent : class;
}

The ClearWatch method accepts a double watchId value, which is the value
returned by the WatchPosition method.

The GetCurrentPosition method accepts a TComponent component, which is the
calling Razor (or Blazor) component.

The WatchPosition method accepts a TComponent component, which is the
calling Razor (or Blazor) component.

The TComponent parameters are used to call the onSuccessCallbackMethodName and
onErrorCallbackMethodName methods. These method names need to be methods
that are attributed with the JSInvokableAttribute attribute. The method signatures
are detailed in the generated triple-slash comments. This is great for consuming these
APIs, as the source generator will generate the appropriate C# method signature
details based on the types it parsed from the corresponding TypeScript declaration.

C# Source Generators in Action | 219

The implementation of this interface is generated in the GeolocationServices.g.cs C#
file:

namespace Microsoft.JSInterop;

/// <inheritdoc />
internal sealed class GeolocationService : IGeolocationService
{
 private readonly IJSInProcessRuntime _javaScript = null;

 public GeolocationService(IJSInProcessRuntime javaScript)
 {
 _javaScript = javaScript;
 }

 /// <inheritdoc />
 void IGeolocationService.ClearWatch(double watchId)
 {
 _javaScript.InvokeVoid(
 "window.navigator.geolocation.clearWatch",
 watchId);
 }

 /// <inheritdoc />
 void IGeolocationService.GetCurrentPosition<TComponent>(
 TComponent component,
 string onSuccessCallbackMethodName,
 string? onErrorCallbackMethodName,
 PositionOptions? options)
 {
 _javaScript.InvokeVoid(
 "blazorators.getCurrentPosition",
 DotNetObjectReference.Create<TComponent>(component),
 onSuccessCallbackMethodName,
 onErrorCallbackMethodName,
 options);
 }

 /// <inheritdoc />
 double IGeolocationService.WatchPosition<TComponent>(
 TComponent component,
 string onSuccessCallbackMethodName,
 string? onErrorCallbackMethodName,
 PositionOptions? options)
 {
 return _javaScript.Invoke<double>(
 "blazorators.watchPosition",
 new object[4]
 {
 DotNetObjectReference.Create<TComponent>(component),
 onSuccessCallbackMethodName,
 onErrorCallbackMethodName,

220 | Chapter 7: Using Source Generators

 options
 });
 }
}

The GeolocationService constructor accepts an IJSInProcessRuntime Java‐
Script, which is the JavaScript runtime specific to the Blazor WebAssembly
execution model.

The IGeolocationService.ClearWatch method accepts a double watchId
and delegates to the "window.navigator.geolocation.clearWatch" JavaScript
method.

The IGeolocationService.GetCurrentPosition method delegates to the
"blazorators.getCurrentPosition" JavaScript method.

The IGeolocationService.WatchPosition method delegates to the
"blazorators.watchPosition" JavaScript method.

The framework-provided DotNetObjectReference is used to create a reference to
the component, which is used to invoke the callback methods. For the GetCurrent
Position and WatchPosition methods, the callback arguments are used internally
within the delegated JavaScript along with the created component reference. At the
time of writing, the blazorators source generator was not capable of generating the
JavaScript code for the "blazorators" object. This should hypothetically be possible,
but it would require more time to develop. Instead, the second handwritten file
is a JavaScript file that contains a bit of corresponding functionality. Consider the
blazorators.geolocation.js JavaScript file:

const onSuccess = (dotnetObj, successMethodName, position) => {
 const result = {
 Timestamp: position.timestamp,
 Coords: {
 Accuracy: position.coords.accuracy,
 Altitude: position.coords.altitude,
 AltitudeAccuracy: position.coords.altitudeAccuracy,
 Heading: position.coords.heading,
 Latitude: position.coords.latitude,
 Longitude: position.coords.longitude,
 Speed: position.coords.speed
 }
 };
 dotnetObj.invokeMethod(successMethodName, result);
 dotnetObj.dispose();
};

const onError = (dotnetObj, errorMethodName, error) => {
 const result = {

C# Source Generators in Action | 221

 Code: error.code,
 Message: error.message,
 PERMISSION_DENIED: error.PERMISSION_DENIED,
 POSITION_UNAVAILABLE: error.POSITION_UNAVAILABLE,
 TIMEOUT: error.TIMEOUT
 };
 dotnetObj.invokeMethod(errorMethodName, result);
 dotnetObj.dispose();
};

const getCurrentPosition = (
 dotnetObj,
 successMethodName,
 errorMethodName,
 options) => {
 navigator.geolocation.getCurrentPosition(
 position => onSuccess(dotnetObj, successMethodName, position),
 error => onError(dotnetObj, errorMethodName, error),
 options);
}

const watchPosition = (
 dotnetObj,
 successMethodName,
 errorMethodName,
 options) => {
 return navigator.geolocation.watchPosition(
 position => onSuccess(dotnetObj, successMethodName, position),
 error => onError(dotnetObj, errorMethodName, error),
 options);
}

window.blazorators = {
 getCurrentPosition,
 watchPosition
};

The onSuccess callback method is a helper method. It’s called by the getCurrent
Position success callback.

The onError callback method is a helper method. It’s called by the watch
Position error callback.

The getCurrentPosition method accepts a DotNetObjectReference dotnetObj,
which is the reference to the component, and a string successMethodName,
which is the name of the method to invoke on the component. The options
parameter is a PositionOptions object, which contains the options for the cur‐
rent position request.

222 | Chapter 7: Using Source Generators

The watchPosition method accepts a DotNetObjectReference dotnetObj,
which is the reference to the component, and a string successMethodName,
which is the name of the method to invoke on the component. The options
parameter is a PositionOptions object, which contains the options for the cur‐
rent position request.

The blazorators object is used to invoke the getCurrentPosition and watch
Position methods.

The following types are all generated by the source generator:

• GeolocationPosition•
• GeolocationPositionError•
• GeolocationCoordinates•
• PositionOptions•

This means that as a developer, you’d consume the Blazor.Geolocation.Web
Assembly NuGet package, call the AddGeolocationServices extension method, and
then use IGeolocationService. The types of these callbacks are also available. This
is a huge win, and it provides a great example of bindings between JavaScript and
the .NET world.

You may recall that in the WeatherComponent discussion in Chapter 3 we discussed a
manual JavaScript interop implementation of geolocation. While this is intentional
for education, you could refactor the manual implementation out and instead use the
Blazor.Geolocation.WebAssembly library.

In the next section, we’ll look at how to use the Blazor.LocalStorage.WebAssembly
NuGet package to access the localStorage API in the application code.

Example Usage of the ILocalStorageService
The ILocalStorageService type has its implementation source generated, so let’s
see it in use. The model app for this book provides several bits of functionality that
rely on the ability of the app state to be persisted beyond the user’s session—for
example, the user’s preferred language and audio description settings, such as voice
speed and speech synthesis voice. These values are persisted in the localStorage and
are restored when the user revisits the site.

In Chapter 4, we discussed AudioDescriptionComponent in passing. Audio

DescriptionComponent is a component that allows the user to configure the speech
synthesis settings. When the user configures the audio description settings, Audio
DescriptionComponent is relying on the AppInMemoryState class. AppInMemoryState

C# Source Generators in Action | 223

is used as a service and was discussed in Chapter 2. It exposes a ClientVoice
Preference property that is used to persist the user’s preferred voice settings, as
shown in Figure 7-2.

Figure 7-2. Audio description component modal

Consider the following ClientVoicePreference.cs record class:

public record class ClientVoicePreference(
 [property: JsonPropertyName("voice")] string Voice,
 [property: JsonPropertyName("voiceSpeed")] double VoiceSpeed);

The ClientVoicePreference record has two properties, Voice and VoiceSpeed. The
Voice property is the name of the voice that the user has selected. The VoiceSpeed
property is the speed at which the voice is spoken. The value of this client preference
is persisted in localStorage as a JSON string. For example, the following JSON
string would represent the user’s preferred voice settings:

{
 "voice": "Microsoft Zira - English (United States)",
 "voiceSpeed": 1.5
}

When this value is present in localStorage, AudioDescriptionComponent will use
it to initialize the ClientVoicePreference property of AppInMemoryState. Consider
a trimmed-down version of the AppInMemoryState.cs class, focusing on the Client
VoicePreference property:

namespace Learning.Blazor.Services;

public sealed class AppInMemoryState
{
 private readonly ILocalStorageService _localStorage;
 private ClientVoicePreference? _clientVoicePreference;

224 | Chapter 7: Using Source Generators

 // Omitted for brevity...

 public AppInMemoryState(ILocalStorageService localStorage) =>
 _localStorage = localStorage;

 public ClientVoicePreference ClientVoicePreference
 {
 get => _clientVoicePreference ??=
 _localStorage.GetItem<ClientVoicePreference>(
 StorageKeys.ClientVoice) ?? new("Auto", 1);
 set
 {
 _localStorage.SetItem(
 StorageKeys.ClientVoice,
 _clientVoicePreference = value ?? new("Auto", 1));

 AppStateChanged();
 }
 }

 // Omitted for brevity...
}

The ILocalStorageService type is injected into the AppInMemoryState class.

The ClientVoicePreference property is read from _localStorage if it’s not
already present in the AppInMemoryState instance.

The class exposes a ClientVoicePreference property that is used to persist the
user’s preferred voice settings. The ClientVoicePreference property is read from
AudioDescriptionComponent to initialize itself.

With knowledge of user-persisted preferences, let’s look now at AudioDescription
Component, which allows the user to configure the speech synthesis settings. Consider
the following AudioDescriptionComponent.cs C# class:

namespace Learning.Blazor.Components
{
 public sealed partial class AudioDescriptionComponent
 {
 private readonly IList<double> _voiceSpeeds =
 Enumerable.Range(0, 12).Select(i => (i + 1) * .25).ToList();

 private IList<SpeechSynthesisVoice> _voices = null!;
 private string _voice = "Auto";
 private double _voiceSpeed = 1;
 private ModalComponent _modal = null!;

 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender)

C# Source Generators in Action | 225

 {
 (_voice, _voiceSpeed) =
 AppState.ClientVoicePreference;

 _details = new AudioDescriptionDetails(
 AppState,
 _voiceSpeeds,
 _voices,
 _voice,
 _voiceSpeed);

 await UpdateClientVoices(
 await JavaScript.GetClientVoicesAsync(
 this, nameof(UpdateClientVoices)));
 }
 }

 [JSInvokable]
 public Task UpdateClientVoices(string voicesJson) =>
 InvokeAsync(() =>
 {
 var voices =
 voicesJson.FromJson<List<SpeechSynthesisVoice>>();
 if (voices is { Count: > 0 })
 {
 _voices = voices;

 StateHasChanged();
 }
 });

 private async Task ShowAsync() => await _modal.ShowAsync();

 private void OnDetailsSaved(AudioDescriptionDetails details)
 {
 // Clone
 _details = details with { };

 AppState.ClientVoicePreference =
 new ClientVoicePreference(_details.Voice, _details.VoiceSpeed);

 Logger.LogInformation(
 "There are {Length} item in localStorage.", LocalStorage.Length);
 }
 }

 public readonly record struct AudioDescriptionDetails(
 AppInMemoryState AppState,
 IList<double> VoiceSpeeds,
 IList<SpeechSynthesisVoice> Voices,
 string Voice,

226 | Chapter 7: Using Source Generators

 double VoiceSpeed);
}

The _voiceSpeeds property is an array of doubles that is used to populate the
Voice Speed slider.

The _voice and _voiceSpeed fields are assigned from AppState.ClientVoice
Preference, which comes from localStorage.

The available voices are retrieved from the callback registered in the Java
Script.GetClientVoicesAsync call.

The ClientVoicePreference property is written to localStorage when it’s
changed.

The AudioDescriptionDetails struct is a readonly record type that is used to
initialize the AudioDescriptionComponent’s _details field.

AudioDescriptionComponent represents various bits of functionality that rely on the
ability of the app state to be persisted beyond the user’s session. This is an important
detail, as it differs from session-based storage. There are two implementations of the
JavaScript Storage interface: localStorage and sessionStorage. The session storage
implementation is for only a single tab life. When the tab is closed, the session’s
storage is gone forever, including the user’s preferred language and audio description
settings, such as voice speed and speech synthesis voice. These values are persisted
in localStorage and are restored when the user revisits the site. Let’s look at the
markup of the AudioDescriptionComponent.razor file:

@inherits LocalizableComponentBase<AudioDescriptionComponent>

 <button class="button is-info is-rounded level-item"
 title=@Localizer["Audio"] @onclick=ShowAsync>

 <i class="fas fa-lg fa-audio-description"></i>

 </button>

<AudioDescriptionModalComponent
 @ref="_modal"
 Title=@Localizer["Settings"]
 Details=@_details
 OnDetailsSaved=@OnDetailsSaved/>

C# Source Generators in Action | 227

AudioDescriptionComponent uses the LocalizableComponentBase class to pro‐
vide localization support.

The majority of the markup is the button within the navigation bar.

AudioDescriptionModalComponent is the modal that is displayed when the user
clicks the audio description button.

When the user clicks the audio description button, ShowAsync is called and Audio
DescriptionModalComponent is displayed. AudioDescriptionModalComponent is a
simple modal that allows the user to configure the speech synthesis settings. A
reference to AudioDescriptionModalComponent is stored in the _modal field using
the @ref attribute. The _details field is initialized with the current values from App
State.ClientVoicePreference and passed to AudioDescriptionModalComponent.
AudioDescriptionModalComponent exposes an OnDetailsSaved event that is handled
by the AudioDescriptionComponent’s OnDetailsSaved method.

Let’s now look at the AudioDescriptionModalComponent.cs C# class:

namespace Learning.Blazor.Components
{
 public sealed partial class AudioDescriptionModalComponent
 {
 [Parameter, EditorRequired]
 public AudioDescriptionDetails Details { get; set; }

 [Parameter, EditorRequired]
 public string Title { get; set; } = null!;

 [Parameter, EditorRequired]
 public EventCallback<AudioDescriptionDetails> OnDetailsSaved
 {
 get;
 set;
 }

 private string _voice = null!;
 private ModalComponent _modal = null!;

 protected override void OnParametersSet() => _voice = Details.Voice;

 private void OnVoiceSpeedChange(ChangeEventArgs args) =>
 Details = Details with
 {
 VoiceSpeed = double.TryParse(
 args?.Value?.ToString() ?? "1", out var speed) ? speed : 1
 };

 internal async Task ShowAsync() => await _modal.ShowAsync();

228 | Chapter 7: Using Source Generators

 internal async Task ConfirmAsync()
 {
 if (OnDetailsSaved.HasDelegate)
 {
 await OnDetailsSaved.InvokeAsync(
 Details = Details with { Voice = _voice });
 }

 await _modal.ConfirmAsync();
 }
 }
}

The Details property is a lightweight readonly record struct type.

The OnDetailsSaved event is an EventCallback that is invoked when the user
clicks the Confirm button.

The _voice field is assigned from the Details property when the component’s
parameters are set.

The VoiceSpeed property is updated when the user changes the value in the
slider.

The ConfirmAsync method is invoked when the user clicks the Confirm button.

AudioDescriptionModalComponent depends on the user’s preferred ClientVoice
Preference to be persisted. This is a very important detail because it differs from
session-based storage. There are two implementations of the JavaScript Storage
interface: localStorage and sessionStorage. The app is concerned only with
localStorage data persistence. Finally, we’re looking at the AudioDescriptionModal
Component Razor markup defined in the AudioDescriptionModalComponent.razor
file:

@inherits LocalizableComponentBase<AudioDescriptionModalComponent>

<ModalComponent @ref="_modal">
 <TitleContent>

 <i class="fas fa-cogs"></i>

 @Title
 </TitleContent>

 <BodyContent>
 <form>
 <div class="field">

C# Source Generators in Action | 229

 <label for="range">
 Voice speed: @Details.VoiceSpeed
 </label>
 <input type="range"
 min="@Details.VoiceSpeeds.Min()"
 max="@Details.VoiceSpeeds.Max()"
 step=".25" class="slider is-fullwidth is-info"
 id="range" list="speeds"
 value="@Details.VoiceSpeed"
 @onchange=@OnVoiceSpeedChange>
 <datalist id="speeds">
 @foreach (var speed in Details.VoiceSpeeds)
 {
 <option value="@speed">speed</option>
 }
 </datalist>
 </div>
 <div class="field">
 <p class="control has-icons-left">

 <select id="voices" class="has-dotnet-scrollbar"
 @bind=_voice>
 <option selected>@Localizer["Auto"]</option>
 @if (Details.Voices is { Count: > 0 })
 {
 @foreach (var voice in Details.Voices)
 {
 <option selected="@voice.Default"
 value="@voice.Name">
 @voice.Name
 </option>
 }
 }
 </select>

 <i class="fas fa-globe"></i>

 </p>
 </div>
 </form>
 </BodyContent>

 <ButtonContent>
 <button class="button is-success is-large"
 @onclick=ConfirmAsync>

 <i class="fas fa-check"></i>

 @Localizer["Okay"]
 </button>

230 | Chapter 7: Using Source Generators

 </ButtonContent>
</ModalComponent>

ModalComponent is a reusable component that is used to display a modal.

The form element is used to provide a form with a slider and a dropdown. The
slider is used to control the voice speed. The dropdown is used to select the voice.

The input is a range type element used to control the voice speed.

The datalist element is used to provide a list of voice speeds.

The select element is used to select the voice.

The option element is used to provide a list of voices from all the Audio
DescriptionDetails.Voices available.

The "Okay" button element will call ConfirmAsync when the user clicks it.

This form is an example of how to use Blazor for two-way binding without using Edit
Context. The @bind attribute is used to bind the _voice field to the Details property.
The @onchange attribute is used to update the Details property when the user
changes the value in the slider or when the user changes the value in the dropdown.
When the user alters these values and closes _modal, the ILocalStorageService
implementation will be used to persist the user’s preferred ClientVoicePreference
value. In the next chapter, we’re going to cover advanced form techniques that use
EditContext to provide two-way binding.

Summary
In this chapter, you learned why source generators are so useful when developing
Blazor apps. Source generators save you development time and can help to reduce
human error that is inherent with handwritten code. You were introduced to the
possibilities of the source generating entire consumable libraries of JavaScript interop
functionality. Using the blazorators source generator project as an example, I showed
you how to consume the Blazor.LocalStorage.WebAssembly NuGet package.

In the next chapter, I’m going to teach you how to do Blazor forms. I’ll demonstrate
to you how to validate user input and how to customize the UX. You’ll learn how to
use the framework-provided EditForm component.

Summary | 231

CHAPTER 8

Accepting Form Input with Validation

In this chapter, you’ll learn how to use the framework-provided components for
accepting form input to bind custom C# models to the EditForm component. We’ll
cover native speech recognition when used in forms. You’ll also learn how to use
Reactive Extensions with Rx.NET. The model app’s contact page form will demon‐
strate all of this.

Let’s start with how form submission is used to accept and validate user input. You’ll
see how valid user input can be sent to HTTP endpoints for processing.

The Basics of Form Submission
The core functionality of an HTML form element is to accept and validate user input.
When a user’s input is invalid, the user should be notified. When there is valid input,
submit that input to an HTTP endpoint to process. The form submission process is
as follows:

1. The form is presented to the user to fill out.1.
2. The user fills out the form and attempts to submit it.2.
3. The form is validated.3.

a. If the form is invalid, validation messages or errors are shown to the user.a.
b. If the form is valid, the input is sent off for processing.b.

Between these steps, the user interacts with the form in various ways, sometimes by
typing, sometimes by clicking, sometimes by selecting a radio button, etc. When the
form is invalid, the state of the form can display validation messages or errors to the
user. A form can accept many different types of user input. We can apply dynamic
CSS to desirable input elements to indicate that the user has entered invalid input. We

233

1 “ASP.NET Core Blazor Forms and Input Components,” Microsoft .NET Documentation, August 16, 2022,
https://oreil.ly/3qzqQ.

can control which element has focus, and we can set elements as disabled or make
them readonly. These styles include animations to emphasize errant conditions and
draw the user’s attention to a specific area.

Framework-Provided Components for Forms
Blazor provides many components that apply a layer atop native HTML elements.
One such component is EditForm. The EditForm component is designed to be
used as a wrapper around the native HTML form element. This is what’s used in
the Contact form of the book’s model app. There are other framework-provided
components as well. In the next section, you’ll see the various framework-
provided components that can be used with EditForm.

Table 8-1 shows the various framework-provided components that can be used with
the EditForm component.1

Table 8-1. Framework-provided form components

Blazor component HTML element wrapped Purpose of component

EditForm <form> Provides a wrapper around the native HTML form
element

InputCheckbox <input type="checkbox"> Accepts user input for either true or false

InputDate
<TValue>

<input type="date"> Accepts a DateTime value as user input

InputFile <input type="file"> Accepts a file upload

InputNumber
<TValue>

<input type="number"> Accepts a numeric value as user input

InputRadio
<TValue>

<input type="radio"> Accepts a mutually exclusive set of values representing a
single choice

InputRadio
Group<TValue>

Parent of one or more Input
Radio<TValue> components

Semantically wraps the InputRadio<TValue>
components together such that they’re mutually
exclusive

InputSelect
<TValue>

<select> Accepts a TValue value as user input from a list of
custom options

InputText <input type="text"> Accepts a string value as user input

InputTextArea <textarea> Accepts a string value as user input but traditionally
displays and expects larger values than the Input
Text component

234 | Chapter 8: Accepting Form Input with Validation

https://oreil.ly/3qzqQ

Using these aforementioned components, you can build out a form that is as rich and
as complex as your app needs.

In the next section, I’ll show you how to build a model that will represent the state of
the form and the user interacting with it. This model will be decorated with metadata
that will power the validation of the form it binds to.

Models and Data Annotations
One of the common use cases for forms is to give the end user a way to contact
someone from within the app for various reasons. The Contact form of the Learning
Blazor app does exactly that. The user can fill out the form and send me, the owner of
the app, a message. After they hit send and confirm that they’re human, the message
is sent to me as an email. We’ll go over how this works throughout the chapter.

Let’s start by going through the form’s user inputs:

1. The user’s email address (current user of the app, which is prefilled if the user is1.
logged in).

2. The user’s first and last name, as a pair.2.
3. The subject of the message, or the reason they’re contacting through the app.3.
4. The message input, which uses a TextArea component and some interesting4.

JavaScript interop. The message input exposes a microphone button that toggles
speech recognition.

As a visual point of reference, consider Figure 8-1.

Figure 8-1. An example rendering of the Contact page

Models and Data Annotations | 235

https://oreil.ly/LZzCM

Defining Component Models
As part of the form submission process, EditForm will validate the user’s input.
EditForm will also display validation messages and errors. This is all based on either
EditContext or a model. A model is a C# class used to bind to properties and
represent relevant values. In the case of the Contact page, it’s using EditContext to
manage the state of the form. And EditContext relies on a corresponding model.
Let’s take a look at ContactComponentModel in the ContactComponentModel.cs C#
file, which is responsible for representing the state of the form:

namespace Learning.Blazor.ComponentModels;

public record ContactComponentModel()
{
 [Required]
 public string? FirstName { get; set; } = null!;

 [Required]
 public string? LastName { get; set; } = null!;

 [RegexEmailAddress(IsRequired = true)]
 public string? EmailAddress { get; set; } = null!;

 [Required]
 public string? Subject { get; set; } = null!;

 [RequiredAcceptance]
 public bool AgreesToTerms { get; set; }

 [Required]
 public string? Message { get; set; } = null!;

 public AreYouHumanMath NotRobot { get; } =
 AreYouHumanMath.CreateNew(MathOperator.Subtraction);

 public string RobotQuestion => NotRobot.GetQuestion();

 public static implicit operator ContactRequest(
 ContactComponentModel model) =>
 new(model.FirstName!,
 model.LastName!,
 model.EmailAddress!,
 model.Subject!,
 model.Message!);
}

The model is a record type.

The FirstName and LastName properties are required, per the Required attribute.

236 | Chapter 8: Accepting Form Input with Validation

The EmailAddress property is required, and it must be a valid email address.

The AgreesToTerms property is required as true.

The NotRobot property is a readonly property that is calculated from the AreYou
HumanMath class.

The record defines an operator to convert to a ContactRequest.

This model exposes the values that the user is expected to provide. The user’s first
and last name is required, as well as a valid email address. The Required attribute
is a framework-provided data annotation attribute that is used to indicate that the
user must provide a value for the property. If the user doesn’t provide a value, and
they attempt to either submit the form or navigate away from the underlying HTML
element, EditForm will display an error message. C# attributes are used to provide
additional information about the thing they’re applied to.

Defining and Consuming Validation Attributes
The RegexEmailAddress attribute is a custom attribute that is used to indicate that
the user must provide a valid email address. When decorating a model property, this
attribute will validate it as an email address. The RequiredAcceptance attribute is
a custom attribute that is used to indicate that the user must accept the terms and
conditions. You can use all sorts of attributes to define objects. The Message property
is required, as is the Subject property.

Let’s take a look at the RegexEmailAddress attribute implementation in the Regex
EmailAddressAttribute.cs C# file:

using System.Text.RegularExpressions;

namespace Learning.Blazor.DataAnnotations;

[
 AttributeUsage(
 AttributeTargets.Property |
 AttributeTargets.Field |
 AttributeTargets.Parameter,
 AllowMultiple = false)
]
public sealed class RegexEmailAddressAttribute : DataTypeAttribute
{
 internal static readonly Regex EmailExpression =
 new("^([a-zA-Z0-9_\\-\\.]+)@" +
 "((\\[[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.)" +
 "|(([a-zA-Z0-9\\-]+\\.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\\]?)$",
 RegexOptions.CultureInvariant | RegexOptions.Singleline);

Models and Data Annotations | 237

 /// <summary>
 /// Gets or sets a value indicating if an email is required.
 /// </summary>
 /// <remarks>Defaults to <c>true</c>.</remarks>
 public bool IsRequired { get; set; } = true;

 public RegexEmailAddressAttribute()
 : base(DataType.EmailAddress)
 {
 }

 public override bool IsValid(object? value)
 {
 if (value is null)
 {
 return !IsRequired;
 }

 return value is string valueAsString
 && EmailExpression.IsMatch(valueAsString);
 }
}

The AttributeUsage decorator specifies the usage of another attribute class, in
this case, RegexEmailAddressAttribute, which applies only to properties, fields,
and parameters.

EmailExpression is a readonly Regex instance that is used to validate the email
address.

The IsRequired property allows the developer to determine whether an email
address is required at all.

The constructor calls its base constructor with the DataType.EmailAddress
value.

The IsValid method is used to validate the email address, which is passed as a
nullable object?.

Blazor developers can author a custom DataTypeAttribute. If the user enters an
email address that doesn’t match the regular expression, EditForm will display an
error message. If the value is null and the IsRequired property is true, EditForm
will display an error message. The other custom attribute is RequireAcceptance
Attribute. This attribute is used to indicate that the user must accept the terms and
conditions.

238 | Chapter 8: Accepting Form Input with Validation

Next, let’s look at RequiredAcceptanceAttribute, which is defined in the Required
AcceptanceAttribute.cs C# file:

namespace Learning.Blazor.DataAnnotations;

[
 AttributeUsage(
 AttributeTargets.Property |
 AttributeTargets.Field |
 AttributeTargets.Parameter,
 AllowMultiple = false)
]
public sealed class RequiredAcceptanceAttribute : DataTypeAttribute
{
 public RequiredAcceptanceAttribute()
 : base(DataType.Custom)
 {
 }

 public override bool IsValid(object? value)
 {
 if (value is null)
 {
 return false;
 }

 return bool.TryParse(value.ToString(), out var isAccepted)
 && isAccepted;
 }
}

RequiredAcceptanceAttribute is similar to RegexEmailAddressAttribute.

The constructor calls the DataTypeAttribute base constructor with the Data
Type.Custom value.

The IsValid method is used to validate the acceptance of the terms and
conditions.

If the user doesn’t accept the terms and conditions, EditForm will display an error
message. When the object that represents value is null, or value is false, the error
condition is triggered. You’re free to create any custom business logic rules that you
may require. Whenever you need to accept user input, you’ll start with modeling an
object that represents your needs. You’ll attribute the model’s properties with either
custom or framework-provided data annotations. In the next section, we’ll put this
into practice and see how a model is bound to the form components.

Models and Data Annotations | 239

Implementing a Contact Form
The markup for the Contact page is a bit lengthy, but it contains a fair number of
user inputs with various functionality and validation requirements. To animate the
controls and provide the appropriate styles when user input is in a state of error, the
form needs a bit more markup than a semantic form. The page markup is contained
in the Contact.cshtml Razor file:

@page "/contact"
@attribute [AllowAnonymous]
@inherits LocalizableComponentBase<Contact>

<PageTitle>@Localizer["Contact"]</PageTitle>

<section class="section">
 <h1 class="is-size-3 pb-3">@Localizer["Contact"]</h1>

 <EditForm class="pb-4" Context="cxt" EditContext="_editContext"
 OnValidSubmit=@(async c => await OnValidSubmitAsync(c))>
 <DataAnnotationsValidator />

 <!-- Email address -->
 <FieldInput>
 <FieldLabelContent>
 @Localizer["Email"]
 <i class="pl-4 far fa-lg
 @cxt.GetValidityCss(() => _model.EmailAddress)"></i>
 </FieldLabelContent>
 <FieldControlContent>
 <InputText @ref="_emailInput"
 @bind-Value="_model.EmailAddress" class="input"
 readonly=@_isEmailReadonly disabled=@_isEmailReadonly
 placeholder="@Localizer["EmailPlaceholder"]" />

 <i class="fas fa-envelope"></i>

 </FieldControlContent>
 </FieldInput>
 <!-- First and last name -->
 <div class="field is-horizontal">
 <div class="field-label is-normal">
 <label class="label">
 @Localizer["From"]
 <i class="pl-4 far fa-lg
 @cxt.GetValidityCss(
 () => _model.FirstName,
 () => _model.LastName)"></i>
 </label>
 </div>
 <div class="field-body">
 <div class="field">

240 | Chapter 8: Accepting Form Input with Validation

 <p class="control is-expanded has-icons-left">
 <InputText @ref="_firstNameInput"
 @bind-Value="_model.FirstName" class="input"
 placeholder="@Localizer["FirstName"]" />

 <i class="fas fa-user"></i>

 </p>
 </div>
 <div class="field">
 <p class="control is-expanded has-icons-left">
 <InputText @bind-Value="_model.LastName" class="input"
 placeholder="@Localizer["LastName"]" />

 <i class="fas fa-user"></i>

 </p>
 </div>
 </div>
 </div>
 <!-- Subject -->
 <FieldInput>
 <FieldLabelContent>
 @Localizer["Subject"]
 <i class="pl-4 far fa-lg
 @cxt.GetValidityCss(() => _model.Subject)"></i>
 </FieldLabelContent>
 <FieldControlContent>
 <InputText @bind-Value="_model.Subject" class="input"
 placeholder="@Localizer["SubjectPlaceholder"]" />

 <i class="fas fa-info-circle"></i>

 </FieldControlContent>
 </FieldInput>
 <!-- Message -->
 <FieldInput ControlClasses=@(Array.Empty<string>())>
 <FieldLabelContent>
 @Localizer["Message"]
 <i class="pl-4 far fa-lg
 @cxt.GetValidityCss(() => _model.Message)"></i>
 </FieldLabelContent>
 <FieldControlContent>
 <AdditiveSpeechRecognitionComponent
 SpeechRecognitionStarted=OnRecognitionStarted
 SpeechRecognitionStopped=OnRecognitionStopped
 SpeechRecognized=OnSpeechRecognized />
 <InputTextArea @bind-Value="_model.Message" class="textarea"
 readonly=@_isMessageReadonly disabled=@_isMessageReadonly
 placeholder="@Localizer["MessagePlaceholder"]" />
 </FieldControlContent>
 </FieldInput>

Implementing a Contact Form | 241

 <!-- Agree to terms -->
 <FieldInput ControlClasses=@(Array.Empty<string>())>
 <FieldLabelContent>
 @Localizer["AgreeToTerms"]
 <i class="pl-4 far fa-lg
 @cxt.GetValidityCss(() => _model.AgreesToTerms)"></i>
 </FieldLabelContent>
 <FieldControlContent>
 <label class="checkbox">
 <InputCheckbox @bind-Value="_model.AgreesToTerms" />
 @Localizer["TermsAndConditions"]
 <a href="/termsandconditions" target="_blank"
 rel="noopener noreferrer">
 <i class="fas fa-external-link-alt"></i>

 </label>
 </FieldControlContent>
 </FieldInput>
 <!-- Send button -->
 <div class="field is-horizontal">
 <div class="field-label">
 <!-- Left empty for spacing -->
 </div>
 <div class="field-body">
 <div class="field is-grouped">
 <button class="button is-success is-large" type="submit">

 <i class="fas fa-paper-plane"></i>

 @Localizer["Send"]
 </button>
 </div>
 </div>
 </div>
 </EditForm>
</section>

<VerificationModalComponent @ref="_modalComponent"
 VerificationAttempted=@OnVerificationAttempted />

The Contact page allows anonymous users to contact the site owner.

EditForm is a framework-provided component that is used to render a form.

The page model accepts an EmailAddress property and renders an <InputText>
element.

The page model accepts FirstName and LastName properties and renders two
<input type="text"> elements.

242 | Chapter 8: Accepting Form Input with Validation

The page model accepts a Subject property and renders an <InputText>
element.

The page model accepts a Message property and renders an <InputTextArea>
element. This is where the additive speech recognition component is rendered,
and that’s detailed later in this chapter.

The page model accepts an AgreesToTerms property and renders an <Input
Checkbox> element.

The page model accepts a Send button and renders a <button> element.

The page references VerificationModalComponent for a spam filter.

The page that displays when the /contact route is requested renders as shown in
Figure 8-2.

Figure 8-2. A blank Contact page form with only the email address prefilled

Let’s summarize what’s going on here. The Contact page is a form with a few
fields. The page model is a class that contains the properties that are bound
to the form elements. The EditForm component is a framework-provided com‐
ponent that renders an HTML form element. It requires either EditContext or
Model, but not both. In this case, EditContext wraps ContactComponentModel.
The model used in EditContext can be any object. EditContext holds metadata
related to a data editing process, such as flags to indicate which fields have
been modified and the current set of validation messages. The EditContext.Model
will be used by EditForm to render the form. EditContext.OnValidSubmit event
handler is used to handle the form submission. When the form is both valid

Implementing a Contact Form | 243

and submitted, the Contact.OnValidSubmitAsync event handler is called. The Data
AnnotationsValidator framework-provided component is used to add validation
DataAnnotations attribute support that informs the EditContext instance with
metadata about the model.

The fields in the form are as follows:

Email
A FieldInput custom component bound to the model’s EmailAddress property.

From
Two horizontal fields presented as framework-provided InputText components,
bound to the model’s FirstName and LastName properties. These values are both
required and can alter the state of the validation for a shared validation icon.

Subject
A FieldInput custom component bound to the model’s Subject property.

Message
A FieldInput custom component bound to the model’s Message property
but relying on AdditiveSpeechRecognitionComponent to add speech recogni‐
tion support that is tied to an InputTextArea component. AdditiveSpeech
RecognitionComponent renders an overlay toggle <button> in the upper-
righthand corner of its parent HTML element.

Whether the user agrees to the terms
A FieldInput custom component bound to the model’s AgreesToTerms property,
and the framework-provided InputCheckbox component that is used to render a
checkbox.

Submit form button
A send <button type="submit"> element at the end of the EditForm markup.
When the user clicks this button, the EditContext.OnValidSubmit event handler
is called, if the form is valid.

Modal dialog
A dialog rendered by VerificationModalComponent is shown when the user
clicks the Send button. The dialog serves as a spam filter, as it requires the user
who submitted the form to answer a math question in string form.

The shadow component does this because there’s a fair bit of Razor markup. It’s
used to manage the framework-provided EditContext, _model, _emailInput, _first
NameInput, _modalComponent, and two bool values for whether the email or message
input elements should be readonly. These are detailed in the coming sections.
Since the contact page is attributed with AllowAnonymous, it can be accessed by

244 | Chapter 8: Accepting Form Input with Validation

nonauthenticated users; this is intentional to allow potential users of the app to reach
out with questions.

It is common for Razor components to use Expression<Func<T>> semantics (or
expression trees) when evaluating model properties. An expression tree represents
code as a data structure, where each node is an expression. Expressions look like
functions but are not evaluated. Instead, an expression is parsed. For example,
when we pass in _model.EmailAddress, the Blazor library calls FieldCssClass.
The expression is then parsed extracting how to evaluate both our model and its
corresponding property value.

As a convenience for determining which CSS classes are applicable given the state
of a specific model’s property expression, the GetValidityCss extension method
calculates the appropriate CSS classes for the property. Consider the EditContext
Extensions.cs C# file:

namespace Learning.Blazor.Extensions;

public static class EditContextExtensions
{
 /// <summary>
 /// Maps the given <paramref name="accessor"/>
 /// expression to the resulting CSS.
 /// </summary>
 public static string GetValidityCss<T>(
 this EditContext context,
 Expression<Func<T?>> accessor)
 {
 var css = context?.FieldCssClass(accessor);
 return GetValidityCss(
 IsValid(css),
 IsInvalid(css),
 IsModified(css));
 }

 /// <summary>
 /// Maps the given <paramref name="accessorOne"/> and
 /// <paramref name="accessorTwo"/> expressions to
 /// the resulting CSS.
 /// </summary>
 public static string GetValidityCss<TOne, TTwo>(
 this EditContext context,
 Expression<Func<TOne?>> accessorOne,
 Expression<Func<TTwo?>> accessorTwo)
 {
 var cssOne = context?.FieldCssClass(accessorOne);
 var cssTwo = context?.FieldCssClass(accessorTwo);
 return GetValidityCss(
 IsValid(cssOne) && IsValid(cssTwo),
 IsInvalid(cssOne) || IsInvalid(cssTwo),

Implementing a Contact Form | 245

 IsModified(cssOne) && IsModified(cssTwo));
 }

 /// <summary>
 /// Maps the given validation states into corresponding CSS classes.
 /// </summary>
 public static string GetValidityCss(
 bool isValid, bool isInvalid, bool isModified) =>
 (isValid, isInvalid) switch
 {
 (true, false) when isModified => "fa-check-circle has-text-success",
 (false, true) when isModified => "fa-times-circle has-text-danger",

 _ => "fa-question-circle"
 };

 private static bool IsValid(string? css) =>
 IsContainingClass(css, "valid") && !IsInvalid(css);

 private static bool IsInvalid(string? css) =>
 IsContainingClass(css, "invalid");

 private static bool IsModified(string? css) =>
 IsContainingClass(css, "modified");

 private static bool IsContainingClass(string? css, string name) =>
 css?.Contains(name, StringComparison.OrdinalIgnoreCase) ?? false;
}

The Expression<Func<T>> parameter is used to access the model’s property.

The Expression<Func<TOne>> and Expression<Func<TTwo>> parameters are
used to access the model’s property.

The bool parameters are used to determine the CSS class to return.

The IsValid method is used to determine if the property is valid.

The IsInvalid method is used to determine if the property is invalid.

The IsModified method is used to determine if the property is modified.

The EditContextExtensions class contains some extension methods that are used
to determine the CSS class to return based on the state of the model’s property. The
GetValidityCss method and its overloads are used to determine the CSS class to
return based on the state of the model’s property. Using the framework-provided Edit
ContextFieldClassExtensions.FieldCssClass extension method, we can evaluate

246 | Chapter 8: Accepting Form Input with Validation

the current CSS classes given the state of the corresponding expression. The Get
ValidityCss method is used throughout the markup.

Next, let’s have a look at the Contact.razor.cs C# file:

namespace Learning.Blazor.Pages
{
 public sealed partial class Contact
 {
 private EditContext _editContext = null!;
 private ContactComponentModel _model = new();
 private InputText _emailInput = null!;
 private InputText _firstNameInput = null!;
 private VerificationModalComponent _modalComponent = null!;
 private bool _isEmailReadonly = false;
 private bool _isMessageReadonly = false;

 [Inject]
 public IHttpClientFactory HttpFactory { get; set; } = null!;

 protected override async Task OnInitializedAsync()
 {
 // Initializes the "User" instance.
 await base.OnInitializedAsync();
 InitializeModelAndContext();
 }

 private void InitializeModelAndContext()
 {
 if (User is { Identity.IsAuthenticated: true })
 {
 _model = _model with
 {
 EmailAddress = User.GetFirstEmailAddress()
 };
 _isEmailReadonly = _model.EmailAddress is not null
 && RegexEmailAddressAttribute.EmailExpression.IsMatch(
 _model.EmailAddress);
 }

 _editContext = new(_model);
 }

 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender)
 {
 var input = _isEmailReadonly ? _firstNameInput : _emailInput;
 await (input?.Element?.FocusAsync(preventScroll: true)
 ?? ValueTask.CompletedTask);
 }

Implementing a Contact Form | 247

 }

 private void OnRecognitionStarted() => _isMessageReadonly = true;

 private void OnRecognitionStopped(
 SpeechRecognitionErrorEvent? error) =>
 _isMessageReadonly = false;

 private void OnSpeechRecognized(string transcript)
 {
 _model.Message = _model.Message switch
 {
 null => transcript,
 _ => $"{_model.Message.Trim()} {transcript}".Trim()
 };

 _editContext.NotifyFieldChanged(
 _editContext.Field(nameof(_model.Message)));
 }

 private Task OnValidSubmitAsync(EditContext context) =>
 _modalComponent.PromptAsync(context);

 private async Task OnVerificationAttempted(
 (bool IsVerified, object? State) attempt)
 {
 if (attempt.IsVerified)
 {
 var client =
 HttpFactory.CreateClient(HttpClientNames.ServerApi);

 using var response =
 await client.PostAsJsonAsync<ContactRequest>(
 "api/contact",
 _model,
 DefaultJsonSerialization.Options);

 if (response.IsSuccessStatusCode)
 {
 AppState?.ContactPageSubmitted?.Invoke(_model);
 _model = new();
 InitializeModelAndContext();
 await InvokeAsync(StateHasChanged);
 }
 }
 }
 }
}

248 | Chapter 8: Accepting Form Input with Validation

The EditContext instance wraps ContactComponentModel.

The OnInitializedAsync method calls the base implementation, which initial‐
izes the User instance and immediately calls InitializeModelAndContext.

The InitializeModelAndContext method initializes the _model and _edit
Context properties from the User instance.

The OnAfterRenderAsync method determines which input element should have
focus when the page is rendered.

The OnRecognitionStarted method sets the _isMessageReadonly property to
true.

The OnSpeechRecognized method updates the _model.Message property with
the transcript and notifies the _editContext instance that the Message property
has changed.

The OnValidSubmitAsync method is called when the user clicks the Send button.

The OnVerificationAttempted method throws a ContactRequest at the
Web.Api project’s [HttpPost("api/contact")] endpoint.

When the Contact page is initialized, the base.User instance is initialized as well.
If there is an authenticated user, the email address is set as readonly and the user’s
email is used. If there is no authenticated user, the _model instance is initialized with
an empty ContactComponentModel instance. When the page first is rendered, either
the _emailInput or _firstNameInput element is focused.

There are two methods responsible for managing whether the _messageInput ele‐
ment is readonly. The OnRecognitionStarted method sets the _isMessageReadonly
property to true; OnRecognitionStopped sets it to false. When speech is recog‐
nized, the _model.Message property is updated with the transcript, and the _edit
Context instance is notified that the Message property has changed.

When the user supplies all of the required inputs, the form is considered “valid.”
At this point, the user is free to submit the form. When the form is submitted,
the _modalComponent instance is shown, which prompts the user to answer one
question. If they’re able to do so, the form information is sent to the Web.Api project’s
[HttpPost("api/contact")] endpoint for processing.

Implementing a Contact Form | 249

To help encapsulate a bit of common code for various field inputs, I wrote a Field
Input form component. This component is used throughout the Contact page. Let’s
take a look at the FieldInput.razor Razor markup file:

<div class="field is-horizontal">
 <div class="field-label @LabelSpecifierClass">
 <label class="label">
 @FieldLabelContent
 </label>
 </div>
 <div class="field-body">
 <div class="field @ControlSpecifierClass">
 <p class="control @ControlClasses.ToSpaceDelimitedString()">
 @FieldControlContent
 </p>
 </div>
 </div>
</div>

@code {
 [Parameter]
 public string? LabelSpecifierClass { get; set; } = "is-normal";

 [Parameter]
 public string? ControlSpecifierClass { get; set; }

 [Parameter]
 public RenderFragment? FieldLabelContent { get; set; }

 [Parameter, EditorRequired]
 public RenderFragment? FieldControlContent { get; set; }

 [Parameter]
 public string[]? ControlClasses { get; set; } = new string[]
 {
 "is-expanded", "has-icons-left"
 };
}

The FieldLabelContent property is used to render label for the field.

The FieldControlContent property is used to render input for the field.

The component accepts several optional and required parameters.

250 | Chapter 8: Accepting Form Input with Validation

Since the label and input elements are rendered as a RenderFragment, the consumer
is free to render whatever they want. In the Contact page markup, you can see
examples of FieldInput components with the following components:

• Single framework-provided InputText component•
• Multiple framework-provided InputText components•
• A custom AdditiveSpeechRecognitionComponent component•
• Single framework-provided InputCheckbox component•

Let’s explore a few more states that the form can be rendered as.

In addition to label, icons are used to help deliver even more clarity to validation
errors. Imagine the user enters the first name, forgets to enter the last name, and
then provides a subject. They’re free to attempt clicking the Send button, but the
_lastNameInput element will be outlined with a red border and its validity icon will
change to a red cross. The _subjectInput element will have its validity icon change
from the question mark to a green check mark, but the _messageInput element will
not be highlighted, as shown in Figure 8-3.

Figure 8-3. An example close-up rendering of an invalid Contact page

The user could provide a value for the last name and a message, thus clearing the
validation errors, as shown in Figure 8-4.

Implementing a Contact Form | 251

Figure 8-4. An example close-up rendering of a valid Contact page

In Figures 8-3 and 8-4, you may have noticed a microphone. The message input
element has a button rendered in the upper-righthand corner of its bounding box.
When the user clicks the button, the _messageInput element is temporarily disabled.
This element accepts speech recognition as a form of input. The next section will
show you how to incorporate speech recognition input into your form.

Implementing Speech Recognition as User Input
Speech recognition is a commonly used input mechanism in modern apps, both
for accessibility and overall convenience. More than 90% of web browsers support
the speech recognition API, according to the “Can I Use Speech Recognition?” web
page. The speech recognition API allows web developers to acquire a transcript from
a recognition session from the user’s voice as input. The API is supported by all
modern browsers, including Chrome, Firefox, Safari, and Edge.

To make it so that the user can use speech recognition to input text in the
message field of a form, you need to rely on the browser’s native speech recog‐
nition API. This requires JavaScript interop. To use this API, you could either
write your own implementation to interface with the native API or use a library
that contains this logic. I maintain a Razor class library that provides an ISpeech
RecognitionService implementation that’s published on NuGet as Blazor.Speech
Recognition.WebAssembly. This library exposes this type through DI, allowing con‐
sumers to call .AddSpeechRecognitionServices on the IServiceCollection type.
Once the services are registered, you can consume this interface. This is an abstrac‐
tion over the speech recognition API, and it uses Blazor JavaScript interop. It’s a good
example of how you can create a reusable Razor class library.

252 | Chapter 8: Accepting Form Input with Validation

https://oreil.ly/qhqjt
https://oreil.ly/qhqjt
https://oreil.ly/UpI60
https://oreil.ly/UpI60

Blazor class libraries let you write components, effectively sharing common markup,
logic, and even static assets. Static assets are typically in the wwwroot folder in
ASP.NET Core apps. The Blazor.SpeechRecognition.WebAssembly library defines
a bit of JavaScript code in the wwwroot. Let’s take a look at the blazorators.speech
Recognition.js JavaScript file that exposes the speechSynthesis functionality:

let _recognition = null;

/**
 * Cancels any active speech recognition session,
 * considered best practice to properly clean up.
 * @param {boolean} isAborted
 */
export const cancelSpeechRecognition = (isAborted) => {
 if (_recognition !== null) {
 if (isAborted) {
 _recognition.abort();
 } else {
 _recognition.stop();
 }
 _recognition = null;
 }
};

/**
 * Starts recognizing speech in the browser and registers
 * all the callbacks for the given dotnetObj in context.
 * @param {any} dotnetObj
 * @param {string} lang The BCP47 tag for the language.
 * @param {string} key Used for round-trip verification and callback-receipts.
 * @param {string} onResultMethodName Incremental recognition results callback.
 * @param {string | null} onErrorMethodName Recognition error callback.
 * @param {string | null} onStartMethodName Recognition started callback.
 * @param {string | null} onEndMethodName Recognition ended callback.
 */
export const recognizeSpeech =
 (dotnetObj, lang, key, onResultMethodName,
 onErrorMethodName, onStartMethodName, onEndMethodName) => {
 if (!dotnetObj || !onResultMethodName) {
 return;
 }

 cancelSpeechRecognition(true);

 _recognition =
 new webkitSpeechRecognition() || new SpeechRecognition();
 _recognition.continuous = true;
 _recognition.interimResults = true;
 _recognition.lang = lang;

 if (onStartMethodName) {

Implementing Speech Recognition as User Input | 253

 _recognition.onstart = () => {
 dotnetObj.invokeMethod(onStartMethodName, key);
 };
 }
 if (onEndMethodName) {
 _recognition.onend = () => {
 dotnetObj.invokeMethod(onEndMethodName, key);
 };
 }
 if (onErrorMethodName) {
 _recognition.onerror = (error) => {
 dotnetObj.invokeMethod(onErrorMethodName, key, error);
 };
 }
 _recognition.onresult = (result) => {
 let transcript = '';
 let isFinal = false;
 for (let i = result.resultIndex; i < result.results.length; ++i) {
 transcript += result.results[i][0].transcript;
 if (result.results[i].isFinal) {
 isFinal = true;
 }
 }
 if (isFinal) {
 const punctuation = transcript.endsWith('.') ? '' : '.';
 const replaced =
 transcript.replace(/\S/, str => str.toLocaleUpperCase());
 transcript =
 `${replaced}${punctuation}`;
 }
 dotnetObj.invokeMethod(
 onResultMethodName, key, transcript, isFinal);
 };
 _recognition.start();
 };

window.addEventListener('beforeunload', _ => {
 cancelSpeechRecognition(true);
});

The _recognition variable is used to store the current SpeechRecognition
instance globally.

The cancelSpeechRecognition method is used to cancel the current speech
recognition session.

The recognizeSpeech method is used to start the speech recognition session.

The _recognition instance has several callbacks, each of which is registered.

254 | Chapter 8: Accepting Form Input with Validation

The _recognition.onresult callback is used to send the results back to the
client.

The window.addEventListener method aborts any active speech recognition
session.

Although we’ve used JavaScript for other functionality in this book, this one’s dif‐
ferent because the functions defined here use the export keyword. The export
JavaScript keyword allows you to export a function or variable as an import-able
code from another module. This is a very common JavaScript feature, and it’s used
to make your code more sharable and readable and easier to maintain. Blazor can
import these functions into .NET via JavaScript interop calls to import and a path
to a JavaScript module. Modules simply export their desired functionality, and other
modules consume it. In .NET, this module is represented as the framework-provided
IJSInProcessObjectReference type. For more information about JavaScript isola‐
tion, see Microsoft’s “Call JavaScript Functions from .NET Methods in ASP.NET Core
Blazor” documentation.

The two functions of this JavaScript file are cancelSpeechRecognition and
recognizeSpeech. The primary function is recognizeSpeech as it conditionally
registers all of the provided callbacks when they’re able to be handled. It’s respon‐
sible for instantiating a SpeechRecognition instance and assigning it to the global
_recognition variable of the JavaScript code. Next, we’ll look at the ISpeech
RecognitionService interface. It’s defined in the ISpeechRecognitionService.cs C# file:

namespace Microsoft.JSInterop;

public interface ISpeechRecognitionService : IAsyncDisposable
{
 Task InitializeModuleAsync();

 void CancelSpeechRecognition(bool isAborted);

 IDisposable RecognizeSpeech(
 string language,
 Action<string> onRecognized,
 Action<SpeechRecognitionErrorEvent>? onError = null,
 Action? onStarted = null,
 Action? onEnded = null);
}

The interface declares itself in the Microsoft.JSInterop namespace as a
convenience.

The ISpeechRecognitionService interface is used to define the public Speech
Recognition API.

Implementing Speech Recognition as User Input | 255

https://oreil.ly/0nf9D
https://oreil.ly/0nf9D

The InitializeModuleAsync method is used to initialize the speech recognition
module.

The CancelSpeechRecognition method is used to cancel the speech recognition
session.

The RecognizeSpeech method is used to start the speech recognition session.

Declaring a type in someone else’s namespace (such as
Microsoft.JSInterop) should not be overused. This practice is
typically not publicly recommended, but it’s used here to make the
library more accessible to developers. In this way, as developers
opt in to using this NuGet package, where their apps are already
making use of Microsoft.JSInterop, they can also use the Speech
Recognition API.

This interface inherits IAsyncDisposable, and its DisposeAsync call will perform
the necessary cleanup of the captured module reference. The ISpeechRecognition
Service interface is small, so it’s a good candidate for simple unit testing, which
is discussed in Chapter 9. This makes it easy to perform unit tests on the logic
surrounding the speech recognition module. Next, we’ll look at the DefaultSpeech
RecognitionService class. It’s defined in the DefaultSpeechRecognitionService.cs C#
file:

namespace Microsoft.JSInterop;

internal sealed class DefaultSpeechRecognitionService
 : ISpeechRecognitionService
{
 const string ContentFolder = "_content";
 const string Package = "Blazor.SpeechRecognition.WebAssembly";
 const string Module = "blazorators.speechRecognition.js";

 readonly IJSInProcessRuntime _javaScript;
 readonly SpeechRecognitionCallbackRegistry _callbackRegistry = new();

 IJSInProcessObjectReference? _speechRecognitionModule;
 SpeechRecognitionSubject? _speechRecognition;

 public DefaultSpeechRecognitionService(
 IJSInProcessRuntime javaScript) => _javaScript = javaScript;

 void InitializeSpeechRecognitionSubject()
 {
 if (_speechRecognition is not null)
 {
 CancelSpeechRecognition(false);

256 | Chapter 8: Accepting Form Input with Validation

 _speechRecognition.Dispose();
 }

 _speechRecognition = SpeechRecognitionSubject.Factory(
 _callbackRegistry.InvokeOnRecognized);
 }

 /// <inheritdoc />
 public async Task InitializeModuleAsync() =>
 _speechRecognitionModule =
 await _javaScript.InvokeAsync<IJSInProcessObjectReference>(
 "import",
 $"./{ContentFolder}/{Package}/{Module}");

 /// <inheritdoc />
 public void CancelSpeechRecognition(
 bool isAborted) =>
 _speechRecognitionModule?.InvokeVoid(
 "cancelSpeechRecognition",
 isAborted);

 /// <inheritdoc />
 public IDisposable RecognizeSpeech(
 string language,
 Action<string> onRecognized,
 Action<SpeechRecognitionErrorEvent>? onError,
 Action? onStarted,
 Action? onEnded)
 {
 InitializeSpeechRecognitionSubject();

 var key = Guid.NewGuid();
 _callbackRegistry.RegisterOnRecognized(key, onRecognized);
 if (onError is not null)
 _callbackRegistry.RegisterOnError(key, onError);
 if (onStarted is not null)
 _callbackRegistry.RegisterOnStarted(key, onStarted);
 if (onEnded is not null)
 _callbackRegistry.RegisterOnEnded(key, onEnded);

 _speechRecognitionModule?.InvokeVoid(
 "recognizeSpeech",
 DotNetObjectReference.Create(this),
 language,
 key,
 nameof(OnSpeechRecognized),
 nameof(OnRecognitionError),
 nameof(OnStarted),
 nameof(OnEnded));

 return _speechRecognition!;
 }

Implementing Speech Recognition as User Input | 257

 [JSInvokable]
 public void OnStarted(string key) =>
 _callbackRegistry.InvokeOnStarted(key);

 [JSInvokable]
 public void OnEnded(string key) =>
 _callbackRegistry.InvokeOnEnded(key);

 [JSInvokable]
 public void OnRecognitionError(
 string key, SpeechRecognitionErrorEvent errorEvent) =>
 _callbackRegistry.InvokeOnError(key, errorEvent);

 [JSInvokable]
 public void OnSpeechRecognized(
 string key, string transcript, bool isFinal) =>
 _speechRecognition?.RecognitionReceived(
 new SpeechRecognitionResult(key, transcript, isFinal));

 async ValueTask IAsyncDisposable.DisposeAsync()
 {
 _speechRecognition?.Dispose();
 _speechRecognition = null;

 if (_speechRecognitionModule is not null)
 {
 await _speechRecognitionModule.DisposeAsync();
 _speechRecognitionModule = null;
 }
 }
}

The DefaultSpeechRecognitionService class is both sealed and internal.

There are several fields required for this implementation besides the const
string fields—two framework-provided types (IJSInProcessRuntime and IJSIn
ProcessObjectReference) and two custom types (SpeechRecognitionCallback
Registry and SpeechRecognitionSubject).

InitializeSpeechRecognitionSubject creates the speech recognition subject. If
it already exists, the existing speech recognition session is canceled.

The InitializeModuleAsync method is used to initialize the speech recognition
module.

The CancelSpeechRecognition method is used to cancel the speech recognition
session.

258 | Chapter 8: Accepting Form Input with Validation

The RecognizeSpeech method is used to start the speech recognition session.

The OnStarted method is used to invoke the onStarted callback.

The OnSpeechRecognized method is used to invoke the onRecognized callback.

The InitializeModuleAsync method is required to be called before any other call.
This ensures that the _speechRecognitionModule field is initialized. The Cancel
SpeechRecognition method is used to cancel the speech recognition session. The
RecognizeSpeech method is used to start the speech recognition session. When the
speech recognition session is started, the _speechRecognition field is initialized.
An invocation key is created (Guid.NewGuid()), and this is passed from .NET into
the JavaScript interop calls. The calling JavaScript then uses the given key when
it invokes its callbacks. This is then used to ensure that callbacks are removed
from the _callbackRegistry once they’re called. The OnStarted, OnEnded, and
OnRecognitionError methods are used to invoke the corresponding callbacks. The
OnSpeechRecognized is different, as it instead pushes the given transcript and
isFinal values into the SpeechRecognitionResult object and calls the Recognition
Received method on the _speechRecognition field.

The _speechRecognition field is a SpeechRecognitionSubject type. This custom
type wraps a bit of reactive code and provides an encapsulated observer and observa‐
ble pair. In the next section, I’ll explain how ReactiveX (Reactive Extensions) are used
to create the SpeechRecognitionSubject type.

Reactive Programming with the Observer Pattern
Unlike the OnStarted, OnEnded, and OnRecognitionError events, the OnSpeech
Recognized event triggers many times. This is because the JavaScript speech recogni‐
tion code sets the continuous flag to true when the speech recognition session is
started. The JavaScript code will invoke the onRecognized callback multiple times,
with the isFinal flag set to false for each invocation. When intermediate recogni‐
tion results are available, a final recognition result is still only intermittent. When
final, it’s a complete thought or sentence. The speech recognition service will continue
to listen until either an error occurs or a cancellation is requested. We’ll use reactive
programming, which relies on asynchronous programming logic to handle real-time
updates to otherwise static content. As the speech recognition service fires, our app
will observe each occurrence of the event and take appropriate action.

ReactiveX (or Reactive Extensions) is an API for asynchronous programming with
observable streams. ReactiveX is an implementation of the observer pattern.

Implementing Speech Recognition as User Input | 259

https://reactivex.io

The Observer Pattern
The observer pattern allows some objects to notify other objects about their state
change. This pattern provides a way to subscribe and unsubscribe to and from these
events for any object that implements a subscriber interface. The observer pattern is
used to implement the SpeechRecognitionSubject type, which relies on Reactive
Extensions. For more information about this pattern, see Microsoft’s “Observer
Design Pattern” documentation.

The .NET implementation of Reactive Extensions is known as Rx.NET. Within this
library, a Subject type represents an object that is both an observable sequence
and an observer. In the case of speech recognition, the SpeechRecognitionSubject
type observes a stream of SpeechRecognitionResult objects. Consider the Speech
RecognitionSubject.cs C# file:

namespace Microsoft.JSInterop;

internal sealed class SpeechRecognitionSubject : IDisposable
{
 readonly Subject<SpeechRecognitionResult> _speechRecognitionSubject = new();
 readonly IObservable<(string, string)> _speechRecognitionObservable;
 readonly IDisposable _speechRecognitionSubscription;
 readonly Action<string, string> _observer;

 private SpeechRecognitionSubject(
 Action<string, string> observer)
 {
 _observer = observer;
 _speechRecognitionObservable =
 _speechRecognitionSubject.AsObservable()
 .Where(r => r.IsFinal)
 .Select(r => (r.Key, r.Transcript));

 _speechRecognitionSubscription =
 _speechRecognitionObservable.Subscribe(
 ((string Key, string SpeechRecognition) tuple) =>
 _observer(tuple.Key, tuple.SpeechRecognition));
 }

 internal static SpeechRecognitionSubject Factory(
 Action<string, string> observer) => new(observer);

 internal void RecognitionReceived(
 SpeechRecognitionResult recognition) =>
 _speechRecognitionSubject.OnNext(recognition);

 public void Dispose() => _speechRecognitionSubscription.Dispose();
}

260 | Chapter 8: Accepting Form Input with Validation

https://oreil.ly/DnKMR
https://oreil.ly/DnKMR

The SpeechRecognitionSubject type relies on a subject, observer, observable,
and subscription.

The _observer field is used to invoke the onRecognized callback, and the con‐
structor is private.

The Factory method is used to create the SpeechRecognitionSubject type.

The RecognitionReceived method is used to push the given recognition value
into the _speechRecognitionSubject field.

The Dispose method is used to dispose of the _speechRecognition

Subscription field.

The SpeechRecognitionSubject allows the consumer to push SpeechRecognition
Result instances into its underlying Subject. The consumer also provides an
Action<string, string> observer function, which is used within the observables
subscription. When Subject acts as an observable, it means its stream of intermittent
results can be filtered and conditionally dispatched to the consumer. When the
final transcript is ready, the consumer is notified and provided with the key and
transcript values.

The custom subject wrapper defines only a private constructor, which means it’s
not possible to instantiate this object unless using the static factory method. The
Factory functionality accepts the observer used to instantiate SpeechRecognition
Subject. The subscription instance is stored as a field so that it can be explicitly
cleaned up when the subject is disposed of.

Managing Callbacks with a Registry
Since the service exposes several callbacks, it manages the interop callbacks in a cus‐
tom registry. The SpeechRecognitionCallbackRegistry object allows for registering
a callback and the corresponding invocation of a callback given its key. Let’s look at
the SpeechRecognitionCallbackRegistry.cs C# file:

namespace Microsoft.JSInterop;

internal sealed class SpeechRecognitionCallbackRegistry
{
 readonly ConcurrentDictionary<Guid, Action<string>>
 _onResultCallbackRegister = new();
 readonly ConcurrentDictionary<Guid, Action<SpeechRecognitionErrorEvent>>
 _onErrorCallbackRegister = new();
 readonly ConcurrentDictionary<Guid, Action>
 _onStartedCallbackRegister = new();
 readonly ConcurrentDictionary<Guid, Action>

Implementing Speech Recognition as User Input | 261

 _onEndedCallbackRegister = new();

 internal void RegisterOnRecognized(
 Guid key, Action<string> callback) =>
 _onResultCallbackRegister[key] = callback;

 internal void RegisterOnError(
 Guid key, Action<SpeechRecognitionErrorEvent> callback) =>
 _onErrorCallbackRegister[key] = callback;

 internal void RegisterOnStarted(
 Guid key, Action callback) =>
 _onStartedCallbackRegister[key] = callback;

 internal void RegisterOnEnded(
 Guid key, Action callback) =>
 _onEndedCallbackRegister[key] = callback;

 internal void InvokeOnRecognized(
 string key, string transcript) =>
 OnInvokeCallback(
 key, _onResultCallbackRegister,
 callback => callback?.Invoke(transcript));

 internal void InvokeOnError(
 string key, SpeechRecognitionErrorEvent error) =>
 OnInvokeCallback(
 key, _onErrorCallbackRegister,
 callback => callback?.Invoke(error));

 internal void InvokeOnStarted(string key) =>
 OnInvokeCallback(
 key, _onStartedCallbackRegister,
 callback => callback?.Invoke());

 internal void InvokeOnEnded(string key) =>
 OnInvokeCallback(
 key, _onEndedCallbackRegister,
 callback => callback?.Invoke());

 static void OnInvokeCallback<T>(
 string key,
 ConcurrentDictionary<Guid, T> callbackRegister,
 Action<T?> handleCallback)
 {
 if (key is null or { Length: 0 } ||
 callbackRegister is null or { Count: 0 })
 {
 return;
 }

 if (Guid.TryParse(key, out var guid) &&

262 | Chapter 8: Accepting Form Input with Validation

 callbackRegister.TryRemove(guid, out var callback))
 {
 handleCallback?.Invoke(callback);
 }
 }
}

The _onResultCallbackRegister field is used to store the callback register for
the onRecognized callback.

The RegisterOnRecognized method registers the onRecognized callback, and
the _onResultCallbackRegister field is used to store the callback.

The RegisterOnError method registers the onError callback, and the _onError
CallbackRegister field is used to store the callback.

The InvokeOnRecognized method invokes the onRecognized callback, and the
OnInvokeCallback method invokes the callback.

The InvokeOnError method invokes the onError callback, and the OnInvoke
Callback method invokes the callback.

The OnInvokeCallback method invokes the callback in the register after it’s
removed.

A ConcurrentDictionary represents a thread-safe collection of KVPs that can be
accessed by multiple threads concurrently. There are many alternative approaches
to managing callbacks, but the SpeechRecognitionCallbackRegistry object is the
simplest and most performant. It’s thread-safe and uses globally unique identifiers to
manage the callbacks—which ensures that a single registration is tethered to a single
invocation of a callback. One of the advantages to using C# in a browser such as
this is that we’re spoiled with the native types provided by the .NET ecosystem. Hav‐
ing access to primitives like ConcurrentDictionary, Guid, strongly typed delegates
(Action<T> for example), and even Rx.NET is a huge advantage.

Applying the Speech Recognition Service to Components
Applying SpeechRecognitionSubject and SpeechRecognitionCallbackRegistry to
expose the ISpeechRecognitionService interface, we can now create a custom com‐
ponent that can be added to an HTML element and surface speech recognition
functionality. Let’s look at the AdditiveSpeechRecognitionComponent.cs C# file:

using RecognitionError = Microsoft.JSInterop.SpeechRecognitionErrorEvent;

namespace Learning.Blazor.Components
{

Implementing Speech Recognition as User Input | 263

 public sealed partial class AdditiveSpeechRecognitionComponent
 : IAsyncDisposable
 {
 IDisposable? _recognitionSubscription;
 SpeechRecognitionErrorEvent? _error = null;
 bool _isRecognizing = false;

 string _dynamicCSS => _isRecognizing ? "is-flashing" : "";

 [Inject]
 private ISpeechRecognitionService SpeechRecognition
 {
 get;
 set;
 } = null!;

 [Parameter]
 public EventCallback SpeechRecognitionStarted { get; set; }

 [Parameter]
 public EventCallback<RecognitionError?> SpeechRecognitionStopped
 {
 get;
 set;
 }

 [Parameter, EditorRequired]
 public EventCallback<string> SpeechRecognized { get; set; }

 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender)
 {
 await SpeechRecognition.InitializeModuleAsync();
 }
 }

 void OnRecognizeButtonClick()
 {
 if (_isRecognizing)
 {
 SpeechRecognition.CancelSpeechRecognition(false);
 }
 else
 {
 var bcp47Tag = Culture.CurrentCulture.Name;
 _recognitionSubscription?.Dispose();
 _recognitionSubscription = SpeechRecognition.RecognizeSpeech(
 bcp47Tag,
 OnRecognized,
 OnError,
 OnStarted,

264 | Chapter 8: Accepting Form Input with Validation

 OnEnded);
 }
 }

 void OnRecognized(string transcript) =>
 _ = SpeechRecognized.TryInvokeAsync(transcript, this);

 void OnError(SpeechRecognitionErrorEvent recognitionError)
 {
 (_isRecognizing, _error) = (false, recognitionError);
 _ = SpeechRecognitionStopped.TryInvokeAsync(_error, this);
 }

 void OnStarted()
 {
 _isRecognizing = true;
 _ = SpeechRecognitionStarted.TryInvokeAsync(this);
 }

 public void OnEnded()
 {
 _isRecognizing = false;
 _ = SpeechRecognitionStopped.TryInvokeAsync(_error, this);
 }

 ValueTask IAsyncDisposable.DisposeAsync()
 {
 _recognitionSubscription?.Dispose();
 return SpeechRecognition.DisposeAsync();
 }
 }
}

The AdditiveSpeechRecognitionComponent implements the IAsyncDisposable
interface, which allows us to dispose of the speech recognition module when the
component is removed from the DOM.

The SpeechRecognition property is used to access the speech recognition
service.

The SpeechRecognitionStarted property is optional and is used to notify the
parent component that the speech recognition has started.

The SpeechRecognitionStopped property is also optional, and it’s signaled when
speech recognition has stopped.

The SpeechRecognized property is an EditorRequired parameter, and it’s called
multiple times over the typical session.

Implementing Speech Recognition as User Input | 265

The OnAfterRenderAsync method is used to initialize the speech recognition
module.

The OnRecognizeButtonClick method is used to start or stop speech
recognition.

The OnRecognized method is used to notify the parent component that speech
recognition has been completed.

When the user clicks the microphone button, the OnRecognizeButtonClick method
is called. The consuming Contact page will mark the corresponding input element as
readonly. This helps to ensure that the user cannot edit the text in the input field, as
it is automatically updating from the speech recognition. So, you can’t talk and type
at the same time. The EventCallback instances signal any changes to the consumer.
The TryInvokeAsync is an extension method that conditionally calls the InvokeAsync
method on the EventCallback instance if its HasDelegate value is true.

Form Submission Validation and Verification
Putting this all together, we’ve built a custom Contact page that displays a beautifully
styled form that boasts speech recognition functionality with the click of a button.
Before a user can submit the form, all fields must be validated. As the primary
function of a form is to take user input and give it to the recipient, it’s vital to validate
the input to make sure the information is communicated correctly.

The form model is bound to various form fields, and the form is validated on submis‐
sion. Each form field is represented by an HTML element using Blazor components.
The form field components are responsible for validating the user’s input. When
the framework-provided EditForm component is given a C# model that is invalid,
it will render the form with the appropriate error messages. Only when the form
submission is valid will the EditForm component submit the form. Meaning all of the
data annotations on the model are validated, including required fields, custom regex
patterns, and custom validation methods.

Once the Contact form is considered valid and submitted, the user is prompted by a
modal that acts as a basic spam blocker. We set up this VerificationModalComponent
in Figure 4-3 in Chapter 4. The modal prompts the user to answer random math
problems and requires a correct answer for the submission to proceed.

Figure 8-5 shows an example of this modal prompt.

266 | Chapter 8: Accepting Form Input with Validation

Figure 8-5. An example rendering of the VerificationModalComponent zoomed in

If the answer is incorrect, the modal will not allow the user’s form data to be sent
to the Web.Api project’s endpoint for processing. An incorrect answer is shown in
Figure 8-6.

Figure 8-6. An example rendering of the VerificationModalComponent zoomed in
with the wrong answer

Once the question is correctly answered, the modal is dismissed and the contact
form is processed. A notification is triggered, which states that the contact attempt is
successful, as shown in Figure 8-7.

Form Submission Validation and Verification | 267

Figure 8-7. An example rendering of the confirmation notification

Because the primary function of a form is to take user input and give it to the
recipient, it’s vital to validate the input to make sure the information is communicated
correctly. A model is bound to various form fields, and the form is validated on
submission. Each form field is represented by an HTML element using Blazor com‐
ponents. The form field components are responsible for validating the user’s input.
When the framework-provided EditForm component is given a C# model that is
invalid, it will render the form with the appropriate error messages. Only when the
form submission is valid will the EditForm component submit the form, meaning all
of the data annotations on the model are validated, including required fields, custom
regex patterns, and custom validation methods.

Summary
In this chapter, I showed you how to implement a form that accepts input with
validation. In the process, you learned the basics of form submission, including how
to bind custom C# models to EditForm, how to use data annotations to decorate
model properties with validation attributes, and how to render a form with validation
errors. I also walked you through a speech recognition library that exposes the ability
to accept a user’s spoken word as input that is bound to text input.

In the next chapter, I’m going to show you how to properly test your Blazor apps.
From unit tests with xUnit to component tests with bUnit, you’ll learn how to write
reliable tests that can be used to verify the functionality of your app.

268 | Chapter 8: Accepting Form Input with Validation

CHAPTER 9

Testing All the Things

In this chapter, we’re going to explore the various testing options available to you
as a Blazor developer. It’s important to know what you can test and how to test it.
We’ll start with the most basic testing use cases that apply to all .NET and JavaScript
developers alike. I’ll provide an introduction to testing and show you how to use
the xUnit, bUnit, and Playwright testing frameworks. We will then move on to more
advanced testing scenarios. We’ll finish with code examples that exemplify how to
automate testing with GitHub Action workflows and how to write tests, such as unit,
component, and end-to-end tests.

Why Test?
You may be asking, “What’s the point of testing if your code works anyway?” That’s
a fair question. For years, I felt the same way—I disliked testing because it seemed
unnecessary. After years of writing code, however, I’ve changed my mind. Testing
is a great way to ensure that your code works as expected and can be refactored as
needed. Testing also helps make things work right if core business rules change. Just
as I once said that good code is a love letter for the next developer, testing is a show of
affection as well. Let’s get started with the smallest kind of test—the unit test.

Unit Testing
A unit test is the most basic testing strategy that exercises a small, isolated piece
or unit of code. A unit test should accept only known inputs and return expected
outputs—it’s best to avoid randomization in testing. By automating the unit tests
and avoiding human error, you’re more likely to catch potential issues in future
refactorings.

269

All of the unit tests here are written in C#, but that’s not to say
that you couldn’t write unit tests for the JavaScript code we used in
our model app. I chose not to do this because the Learning Blazor
app has very little JavaScript code and primarily wraps existing
APIs, so it’s highly reliable. In other words, I’m not interested in
maintaining tests that verify only framework code.

A unit test is one of the best ways to ensure code functionality, but it is not a
substitute for manual functional testing because it focuses on a single unit. You can
use testing frameworks, like xUnit, MSTest, and NUnit, to write unit tests for your
Blazor apps. All of these frameworks are well maintained, documented, supported,
and feature-rich. Pair that with a GitHub repository, and you’re off to the races. With
a GitHub workflow file, you can call the dotnet test CLI command to run unit tests.

“At Least One” Dev Testing
My philosophy is that every single line of code that you write should execute at least
once through a debugger with you (the developer) stepping through each line of
code. I refer to this as “at least one” dev testing because it’s been manually tested by at
least one developer. Although this methodology is manual, it’s very beneficial because
you can catch mistakes as you develop your code. But it is great to automate tests, and
that is where unit testing comes in.

A fairly well-adopted unit testing strategy is to develop unit tests
before writing the implementation of the code you’re testing. This
is known as test-driven development (TDD). TDD has the benefit of
being a bit more pragmatic in that you’re forced up front to think
about how an API should be implemented before writing the code.
This is a good way to ensure that you’re testing the right things.

Defining Unit-Testable Code
One good way to do unit testing is with an extension method. I’m a big fan of exten‐
sion methods. They’re so useful that they’ve become idiomatic to C# development.
Extension methods are a great way to add functionality to existing classes. There
was a long-standing misconception that extension methods are difficult to unit test.
This is not true. This comes from the concern that an extension method cannot be
mocked (its implementation cannot be controlled or customized for unit testing),
and therefore other logic that relies on extended functionality cannot be controlled.
It’s believed that this makes it difficult to test. However, in reality, you can still test
both extension methods and consuming functionality. You do not need to mock

270 | Chapter 9: Testing All the Things

everything to write a unit test. Again, a unit test is concerned with only a unit of
work, given known inputs and expecting specific outputs.

In this section, we’re going to work through the Web.Extensions.Tests project of
the model app that uses the common Arrange-Act-Assert testing pattern. In this
pattern, we’ll arrange our inputs, act on the system under test, and assert the expected
outputs are accurate. For more information about this pattern, see Microsoft’s “Unit
Testing Best Practices with .NET Core and .NET Standard” documentation. Web
.Extensions.Tests is an xUnit test project that relies on Microsoft.NET.Sdk, and test
projects like this can be created using the .NET CLI: dotnet new xunit command.
The xunit template has all the dependencies specified and is ready to run tests. For
more information, see the xUnit website.

Throughout the development and the discussion of the model app in this book,
you’ve seen the User property wherever our authenticated user flows through the
system. This property is a ClaimsPrincipal instance, and it serves as a good example
of how to unit test an extension method. You may recall seeing that the User.Get
FirstEmailAddress() method is called (in the Contact page) from Chapter 8. This
method is an extension method that returns the first email address from the user’s
“emails” claim. Let’s look at the extension method functionality first to understand
how it should function and consider the ClaimsPrincipalExtensions.cs file in the
Web.Extensions class library project:

namespace Learning.Blazor.Extensions;

public static class ClaimsPrincipalExtensions
{
 /// <summary>
 /// Gets the first email address (if available) from the "emails" claim.
 /// </summary>
 public static string? GetFirstEmailAddress(this ClaimsPrincipal? user) =>
 user?.GetEmailAddresses()?.FirstOrDefault();

 /// <summary>
 /// Gets the email addresses (if available) from the "emails" claim.
 /// </summary>
 public static string[]? GetEmailAddresses(this ClaimsPrincipal? user)
 {
 if (user is null) return null;

 var emails = user.FindFirst("emails");
 if (emails is { ValueType: ClaimValueTypes.String }
 and { Value.Length: > 0 })
 {
 return emails.Value.StartsWith("[")
 ? emails.Value.FromJson<string[]>()
 : new[] { emails.Value };
 }

Unit Testing | 271

https://oreil.ly/WCx2o
https://oreil.ly/WCx2o
https://xunit.net

 return null;
 }
}

The GetFirstEmailAddress method gets the first email address from the call to
GetEmailAddresses.

The GetEmailAddresses method gets all email addresses for a given user’s
“emails” claim.

The ClaimsPrincipalExtensions class could benefit from some unit tests as the
functionality has several different logical branches. The logic is to return null when
there is not an “emails” claim value. When there is an “emails” claim value, we
want to return an array of email addresses from GetEmailAddresses. This method
normalizes the claim value, effectively parsing whether the string value starts as an
array, in which case it would deserialize it as JSON to a string[]. Otherwise, it’s
treated as a single-length array with the sole email address. In other words, if there
is only one email address, we want to return an array with one element. When there
is more than one, we care only about the first.

Writing an Extension Method Unit Test
To unit test the ClaimsPrincipal extension method, we’ll need to be able to create
an instance with known claims. Consider an internal helper class that’s used to
build a custom ClaimsPrincipal instance, as in the ClaimsPrincipalExtensionsTests
.Internal.cs C# file:

namespace Learning.Blazor.Extensions.Tests;

public sealed partial class ClaimsPrincipalExtensionsTests
{
 class ClaimsPrincipalBuilder
 {
 readonly Dictionary<string, string> _claims =
 new(StringComparer.OrdinalIgnoreCase);

 internal ClaimsPrincipalBuilder WithClaim(
 string claimType, string claimValue)
 {
 _claims[claimType] = claimValue ?? "";
 return this;
 }

 internal ClaimsPrincipal Build()
 {
 var claims = _claims.Select(
 kvp => new Claim(kvp.Key, kvp.Value));

272 | Chapter 9: Testing All the Things

 var identity = new ClaimsIdentity(claims, "TestIdentity");

 return new ClaimsPrincipal(identity);
 }
 }
}

ClaimsPrincipalBuilder is a helper class internal to ClaimsPrincipal

ExtensionsTests.

The WithClaim method adds a claim type and value to the builder instance.

The Build method returns a ClaimsPrincipal instance, creating an identity with
the claims in the builder.

The builder pattern (as described in “Builder Pattern” on page 185) is useful for
this helper. Because we’re creating the ClaimsPrincipal type specific to the test,
the framework will not provide the User instance. Instead, we’ll use the WithClaim
method on the builder to add claims and then use the Build method to create
a ClaimsPrincipal instance. Each test can create its own instance (with known
inputs). Let’s see this helper/builder in action by looking at the ClaimsPrincipal
ExtensionsTests.cs file from the Web.Extensions.Tests project:

namespace Learning.Blazor.Extensions.Tests;

public sealed partial class ClaimsPrincipalExtensionsTests
{
 [Fact]
 public void GetFirstEmailAddressNull()
 {
 var sut = new ClaimsPrincipalBuilder()
 .WithClaim(
 claimType: "emails",
 claimValue: null!)
 .Build();

 var actual = sut.GetFirstEmailAddress();
 Assert.Null(actual);
 }

 [Fact]
 public void GetFirstEmailAddressKeyMismatch()
 {
 var sut = new ClaimsPrincipalBuilder()
 .WithClaim(
 claimType: "email",
 claimValue: @"[""admin@email.org"",""test@email.org""]")
 .Build();

 var actual = sut.GetFirstEmailAddress();

Unit Testing | 273

 Assert.Null(actual);
 }

 [Fact]
 public void GetFirstEmailAddressArrayString()
 {
 var sut = new ClaimsPrincipalBuilder()
 .WithClaim(
 claimType: "emails",
 claimValue: @"[""admin@email.org"",""test@email.org""]")
 .Build();

 var expected = "admin@email.org";
 var actual = sut.GetFirstEmailAddress();
 Assert.Equal(expected, actual);
 }

 [Fact]
 public void GetFirstEmailAddressGetSimpleString()
 {
 var sut = new ClaimsPrincipalBuilder()
 .WithClaim("emails", "test@email.org")
 .Build();

 var expected = "test@email.org";
 var actual = sut.GetFirstEmailAddress();
 Assert.Equal(expected, actual);
 }

 [
 Theory,
 InlineData(
 "emails",
 "test@email.org",
 new[] { "test@email.org" }),
 InlineData(
 "emails",
 @"[""admin@email.org"",""test@email.org""]",
 new[] { "admin@email.org", "test@email.org" }),
 InlineData(
 "email",
 @"[""admin@email.org"",""test@email.org""]",
 null),
 InlineData(
 "emails", null, null),
]
 public void GetEmailAddressesCorrectlyGetsEmails(
 string claimType, string claimValue, string[]? expected)
 {
 var sut = new ClaimsPrincipalBuilder()
 .WithClaim(claimType, claimValue)
 .Build();

274 | Chapter 9: Testing All the Things

 var actual = sut.GetEmailAddresses();
 Assert.Equal(expected, actual);
 }
}

GetFirstEmailAddressNull verifies that given no “emails” claim value, the
method returns null.

GetFirstEmailAddressKeyMismatch verifies that given a claim type mismatch
(there is no “emails” claim, instead “email”), the method returns null.

GetFirstEmailAddressArrayString verifies that given an array of “emails” in the
claim value, the first email address is returned.

GetFirstEmailAddressGetSimpleString verifies that given there’s a single
“email,” it’s returned.

GetEmailAddressesCorrectlyGetsEmails verifies when given claim type and
value pair, the expected email addresses are returned.

The first four tests are decorated using the Fact attribute. This signals to xUnit’s
discoverability mechanism that these methods represent a single unit test. Likewise,
the last test is decorated with Theory and the InlineData attribute. This signals to
xUnit that the test is a parameterized test. The InlineData attribute takes a string
array of email addresses and the expected result. Unit tests decorated with Theory are
run multiple times, once for each InlineData or against various data sets through
other attributes.

When writing Theory tests, it’s important to note that there are
several types of data set attributes that can be used. You can do
some powerful things with xUnit. I prefer it over the other options
because it comes with analyzers that help ensure your tests are
written correctly. For more information about xUnit analyzers, see
my article “xUnit Roslyn Analyzers”.

The ClaimsPrincipalExtensionsTests test class is a single set of eight unit tests.
Some advantages to unit testing are that the tests usually run fast and they have good
readability. At the time of writing, the Web.Extensions.Tests project had 31 tests, and
it took 30 milliseconds to run all the tests.

Unit Testing | 275

https://oreil.ly/TP1pG

Component Testing
Component testing focuses on a single component of functionality. Component tests
have to deal with a bit more overhead than unit tests. This is because components
often reference multiple other components, take on external dependencies, and man‐
age the component’s state, among other reasons. With this added complexity comes a
need for a test framework that can help you test your components.

Blazor components are unable to render themselves. This is where bUnit, a testing
library for Blazor components, comes in. With bUnit, you can do the following:

• Set up and define components under tests using C# or Razor syntax•
• Verify outcomes using semantic HTML comparer•
• Interact with and inspect components as well as trigger event handlers•
• Pass parameters, cascade values, and inject services into components under test•
• Mock IJSRuntime, Blazor authentication and authorization, and others•

To demonstrate component testing, we’re going to look at the Web.Client.Tests
project in the model app. The Web.Client.Tests project was created using the same
template as the xUnit test project that we did in the previous section. To simplify the
passing of parameters to components and the verifying of markup, bUnit allows
the test project to target the Microsoft.NET.Sdk.Razor SDK. This makes it a
Razor project, so it can render Razor markup. The project also defines a <Package
Reference Include="bunit" Version="1.6.4" /> element, which tells the project
to use the bUnit package. Like other test projects, we add a <ProjectReference>
to the project that we’re going to write tests against. The Web.Client.Tests project
references the Web.Client project.

In this test, we’ll define some inputs and see how to write a test that arranges a
component under test, acts on it, and then asserts that it renders correctly. Let’s jump
right into a component test. Consider the ChatMessageComponentTests.razor Razor
test file:

@using Learning.Blazor.Components
@inherits TestContext
@code {
 public static IEnumerable<object[]> ChatMessageInput
 {
 get
 {
 yield return new object[]
 {
 Guid.Parse("f08b0096-5301-4f4d-8e19-6cb1514991ea"),
 "Test message... does this work?",
 "David Pine"

276 | Chapter 9: Testing All the Things

https://bunit.dev

 };
 yield return new object[]
 {
 Guid.Parse("379b3861-0c04-49e9-8287-e5de3a40dcb3"),
 "...",
 "Fake"
 };
 yield return new object[]
 {
 Guid.Parse("f68386bb-e4d9-4fed-86b3-0fe539640b60"),
 "If a tree falls in the forest, does it make a sound?",
 null!
 };
 yield return new object[]
 {
 Guid.Parse("b19ab8b4-7819-438e-a281-56246cd3cda7"),
 null!,
 "User"
 };
 yield return new object[]
 {
 Guid.Parse("26ae3eae-b763-4ff1-8160-11aaad0cf078"),
 null!,
 null!
 };
 }
 }

 [Theory, MemberData(nameof(ChatMessageInput))]
 public void ChatMessageComponentRendersUserAndText(
 Guid guid, string text, string user)
 {
 var message = new ActorMessage(
 Id: guid,
 Text: text,
 UserName: user);

 var cut = Render(
 @<ChatMessageComponent Message="message"
 IsEditable="true"
 EditMessage="() => {}" />);

 cut.MarkupMatches(
 @
 @user

 <i class="fas fa-chevron-right" aria-hidden="true"></i>

 @text

);

Component Testing | 277

 }
}

The class inherits from the bUnit TestContext class.

Several test inputs are defined in the ChatMessageInput property.

The test method is a theory, which means that it will be run multiple times, once
for each element in the ChatMessageInput property.

ActorMessage is arranged with inputs from the test method parameters.

ChatMessageComponent is acted upon by rendering it given its required
parameters.

The test asserts that the markup matches the expected markup.

The ActorMessage type is a record from the model app’s Web.Models project. The
test framework provides TestContext, which is used to render the component under
test (or cut). The Render method returns IRenderedFragment. The MarkupMatches
method is one of many extension methods from bUnit that verifies that the rendered
markup from the markup fragment matches the expected markup fragment.

To run these tests, you can use the dotnet test command or your favorite .NET
IDE. When running these tests in Visual Studio, you can see the unique parameters
for each test in the test summary details, as shown in Figure 9-1.

Figure 9-1. Visual Studio: Test Explorer—test detail summary for
the ChatMessageComponentTests

278 | Chapter 9: Testing All the Things

Now that you’ve seen both unit tests and component tests, I’m going to show you how
to achieve end-to-end testing. In the next section, I’ll introduce you to end-to-end
testing with Playwright by Microsoft.

End-to-End Testing with Playwright
End-to-end testing is a way to test an entire scenario. It tests much more than the
integration of a few parts of an app; instead, it exercises a full app scenario from
beginning to end. Playwright is a browser automation library that enables reliable
end-to-end testing for modern web apps. It’s similar to Selenium, but in my professio‐
nal experience, it is far more reliable and has an easier API surface area from the
standpoint of ease of use. We can use Playwright to test our model app with multiple
browsers, such as Chrome and Firefox.

To demonstrate end-to-end testing with Playwright, let’s look at a login test for our
model app’s Web.Client project. As you may have realized, I enjoy writing partial
classes and separating each partial into a separate file with shared common con‐
cepts. There’s a bit of utilitarian code in the LoginTests.Utilities.cs C# file in the
Web.Client.EndToEndTests project:

namespace Web.Client.EndToEndTests;

public sealed partial class LoginTests
{
 const string LearningBlazorSite = "https://webassemblyof.net";
 const string LearningBlazorB2CSite = "https://learningblazor.b2clogin.com";

 static IBrowserType ToBrowser(BrowserType browser, IPlaywright pw) =>
 browser switch
 {
 BrowserType.Chromium => pw.Chromium,
 BrowserType.Firefox => pw.Firefox,
 _ => throw new ArgumentException($"Unknown browser: {browser}")
 };

 static Credentials GetTestCredentials()
 {
 var credentials = new Credentials(
 Username: GetEnvironmentVariable("TEST_USERNAME"),
 Password: GetEnvironmentVariable("TEST_PASSWORD"));

 Assert.NotNull(credentials.Username);
 Assert.NotNull(credentials.Password);

 return credentials;
 }

 readonly record struct Credentials(
 string? Username,

End-to-End Testing with Playwright | 279

https://playwright.dev

 string? Password);

 public enum BrowserType
 {
 Unknown,
 Chromium,
 Firefox,
 WebKit
 }
}

The class declares two constant string values, which are the live app URL for the
Learning Blazor site and the authentication B2C site.

The ToBrowser method returns an IBrowserType instance, which is a wrapper
around the Playwright browser type.

The GetTestCredentials method returns a Credentials object, which is a
readonly record struct type that contains the username and password for
the test.

Credentials is an immutable object with two readonly string? values repre‐
senting a username and password pair.

BrowserType is an enumeration of the supported browsers.

These utilities will be used in the Playwright test itself.

The Credentials type is populated using environment variables.
This is a secure alternative to hardcoding these values for the
test. The environment variables are used for testing. The TEST_USER
NAME and TEST_PASSWORD environment variables need to also exist
in the continuous delivery pipeline. Luckily, if you’re using a Git‐
Hub repo, it’ll use GitHub Action workflows to consume encrypted
secrets and run all the tests. This is good because it’s a secure
alternative to hardcoding these values for the test, and the tests run
automatically in the CI/CD pipeline.

The end-to-end tests run in both Chromium-based browsers (Chrome and Edge) and
Firefox. Because these tests run in multiple browsers, you’ll need to specify input for
each browser type. Let’s first look at the test input for Chromium by considering the
following LoginTests.Chromium.cs file:

namespace Web.Client.EndToEndTests;

public sealed partial class LoginTests
{

280 | Chapter 9: Testing All the Things

 private static IEnumerable<object[]> ChromiumLoginInputs
 {
 get
 {
 yield return new object[]
 {
 BrowserType.Chromium, 43.04181f, -87.90684f,
 "Milwaukee, Wisconsin (US)"
 };
 yield return new object[]
 {
 BrowserType.Chromium, 48.864716f, 2.349014f,
 "Paris, Île-de-France (FR)", "fr-FR"
 };
 yield return new object[]
 {
 BrowserType.Chromium, 20.666222f, -103.35209f,
 "Guadalajara, Jalisco (MX)", "es-MX"
 };
 }
 }
}

The xUnit testing framework allows for parameterization of test inputs. The
ChromiumLoginInputs property is a collection of object[] objects, each of which
contains the browser type, latitude, longitude, and the calculated location. There is an
optional argument for CultureInfo to use for each test. The test input for Firefox is
similar but with a different browser type. Consider the LoginTests.Firefox.cs file:

namespace Web.Client.EndToEndTests;

public sealed partial class LoginTests
{
 private static IEnumerable<object[]> FirefoxLoginInputs
 {
 get
 {
 yield return new object[]
 {
 BrowserType.Firefox, 43.04181f, -87.90684f,
 "Milwaukee, Wisconsin (US)"
 };
 yield return new object[]
 {
 BrowserType.Firefox, 48.864716f, 2.349014f,
 "Paris, Île-de-France (FR)", "fr-FR"
 };
 yield return new object[]
 {
 BrowserType.Firefox, 20.666222f, -103.35209f,
 "Guadalajara, Jalisco (MX)", "es-MX"
 };

End-to-End Testing with Playwright | 281

 }
 }
}

The only difference between the two is the browser type. Next, let’s consider the
LoginTests.cs file:

namespace Web.Client.EndToEndTests;

public sealed partial class LoginTests
{
 private static bool IsDebugging => Debugger.IsAttached;
 private static bool IsHeadless => !IsDebugging;

 public static IEnumerable<object[]> AllLoginTestInput =>
 ChromiumLoginInputs.Concat(FirefoxLoginInputs);

 [
 Theory,
 MemberData(nameof(AllLoginTestInput))
]
 public async Task CanLoginWithVerifiedCredentials(
 BrowserType browserType,
 float lat,
 float lon,
 string? expectedText,
 string? locale = null)
 var (username, password) = GetTestCredentials();

 using var playwright = await Playwright.CreateAsync();
 await using var browser = await ToBrowser(browserType, playwright)
 .LaunchAsync(new() { Headless = IsHeadless });

 await using var context = await browser.NewContextAsync(
 new BrowserTypeLaunchOptions()
 {
 Permissions = new[] { "geolocation" },
 Geolocation = new Geolocation() // Milwaukee, WI
 {
 Latitude = lat,
 Longitude = lon
 }
 });

 var loginPage = await context.NewPageAsync();
 await loginPage.RunAndWaitForNavigationAsync(
 async () =>
 {
 await loginPage.GotoAsync(LearningBlazorSite);
 if (locale is not null)
 {
 await loginPage.AddInitScriptAsync(@"(locale => {
 if (locale) {

282 | Chapter 9: Testing All the Things

 window.localStorage.setItem(
 'client-culture-preference', `""${locale}""`);
 }
})('" + locale + "')");
 }
 },
 new()
 {
 UrlString = $"{LearningBlazorB2CSite}/**",
 WaitUntil = WaitUntilState.NetworkIdle
 });

 // Enter the test credentials, and "sign in".
 await loginPage.FillAsync("#email", username ?? "fail");
 await loginPage.FillAsync("#password", password ?? "?!?!");
 await loginPage.ClickAsync("#next" /* "Sign in" button */);

 // Ensure the real weather data loads.
 var actualText = await loginPage.Locator("#weather-city-state")
 .InnerTextAsync();

 Assert.Equal(expectedText, actualText);
 }
}

The IsHeadless property is used when launching the test browser, and it deter‐
mines whether the browser is launched in headless mode.

CanLoginWithVerifiedCredentials is a Theory test method that runs on both
Chromium and Firefox browsers.

The playwright object is initialized and creates a browser instance.

The browser configures geolocation permissions and sets latitude and
longitude to test values.

The context from the configured browser creates a new page named loginPage.

The loginPage fills in the username and password and then clicks the “Sign in”
button.

The text from the #weather-city-state element is retrieved.

The CanLoginWithVerifiedCredentials test is a good example of how to use Play‐
wright. In this case, the test is considered a Theory test, and a set of parameters are
passed in as arguments to the test. When using a Theory attribute, the test is run for
each occurrence of test input collection—in this case, on both Chromium and Firefox
browsers. The GetTestCredentials method is used to get the test credentials stored

End-to-End Testing with Playwright | 283

1 Scott Hanselman of Microsoft.

as environment variables. If they’re not present, the test will fail. The test browser
instance is created and launched using the ToBrowser method. The browser object is
configured with the geolocation permission, and latitude and longitude are set
to test values. The context object is created, and loginPage is created from context.
This is a result of awaiting the call to NewPageAsync. This method creates a new page
in the browser context.

We’re validating that a verified and registered user can log in to the Learning Blazor
site. We instruct the context to run and wait for loginPage to navigate to the Learn‐
ing Blazor site. As part of this operation, we conditionally add an initialization script
that will set the client culture with the given locale. This is extremely powerful, as it
allows for the testing of translations. It tests the following:

• The user can log in with the correct credentials.•
• Given a user’s locale, the weather data is displayed in the correct language.•

With loginPage, we then wait for the browser’s URL to match the login site URL.
As the URL changes, the code will wait for the page to render its HTML, the
document to be fully loaded, and the network to be idle. If this doesn’t happen within
a configurable amount of time, the test will fail. Once this condition is met, we fill in
the username and password and click the “Sign in” button.

If we’re unable to interact with the login page or cannot find any of these specific
elements or attributes, the test will fail. The test submits the login test credentials
and given their geolocation permissions, the browser will be able to determine the
current location. The test ends by verifying that the #weather-city-state element
contains the correct text. The test latitude and longitude are set to the test’s theory
values as parameters. The correct string is matched against the known formatted City,
State, and Country values.

All of this functionality is possible only when an authenticated user is logged in and
their location is known. This end-to-end test runs on two browsers, and it is triggered
whenever you push code to main on the app’s GitHub repository. This automated
testing functionality pairs perfectly with the other tests in the model app! All of these
tests are run in an automated fashion, and the results are automatically published to
the CI pipeline. Let’s take a look at that next.

Automating Test Execution
A wise person once told me, “Automate yourself out of a job,”1 and I’m happy to
tell you that this philosophy pays dividends. As a developer, your goal is to be lazy,

284 | Chapter 9: Testing All the Things

in a way. Whenever you catch yourself doing the same thing repeatedly, it’s time to
automate. One way to do this is to use GitHub Actions. I love GitHub Actions! It’s a
powerful and straightforward tool that you can use to automate the testing of your
code as the code changes. I’m very excited to use GitHub Actions to automate the
testing of my code. I believe it’s straightforward to automate the deployment of my
code. In my opinion, GitHub has perfected the art of automation. With just a few
lines of code, you can create a fully automated CI/CD pipeline.

In this section, I’ll show you how to automate a test with GitHub Action workflows,
using the Learning Blazor app as an example. To start, all recognizable GitHub
Action workflow files should reside in the .github/workflows directory of your proj‐
ect’s GitHub repository. For example, in the Learning Blazor repository, there’s a .git
hub/workflows/build-validation.yml file used to build and run unit tests. The
build will fail if any of the numerous tests fail. Let’s look at the build-validation.yml
YAML file:

name: Build Validation

on:
 push:
 branches: [main]
 paths-ignore:
 - '**.md'
 pull_request:
 types: [opened, synchronize, reopened, closed]
 branches:
 - main # only run on main branch

env:
 TEST_USERNAME: ${{ secrets.TEST_USERNAME }}
 TEST_PASSWORD: ${{ secrets.TEST_PASSWORD }}

jobs:
 build:
 name: build
 runs-on: ubuntu-latest

 - name: Setup .NET 6.0
 uses: actions/setup-dotnet@v1
 with:
 dotnet-version: 6.0.x

 - name: Build
 run: |
 dotnet build --configuration Release

 - uses: actions/setup-node@v1
 name: 'Setup Node'
 with:
 node-version: 18

Automating Test Execution | 285

 cache: 'npm'
 cache-dependency-path: subdir/package-lock.json

 - name: 'Install Playwright browser dependencies'
 run: |
 npx playwright install-deps

 - name: Test
 run: |
 dotnet test --verbosity normal

The name is what displays on the GitHub README.md file status badges, along
with the status of the latest run.

Using the on attribute, we’re telling the GitHub Action to run on a specific event.

The env attribute is used to set environment variables.

Every workflow has a jobs attribute, and a job has multiple steps.

Prepare the .NET CLI in the build environment, or install build dependencies.

Playwright requires NodeJS and its package manager, the Node Package Manager
(NPM).

Finally, dotnet test is called, running all three sets of tests.

In this case, we’re telling the workflow to run on a push event, and we’re run‐
ning on only the main branch. We can specify additional logic to function on
the pull_request event or even run it manually from the GitHub UI with the
workflow_dispatch event. With this automated workflow, GitHub Actions will auto‐
matically run tests as your code changes so you don’t have to.

Summary
In this chapter, you learned why it’s important to test your code. You saw three
distinct ways you can test your Blazor applications. You can use unit testing to make
sure the tiniest pieces of your app are on point, component testing to make sure
groups of things are going smoothly, and end-to-end testing to ensure that everything
works together. You saw how to automate testing through GitHub Actions.

We’ve covered a lot of ground throughout this entire book. I’ve shared with you some
of the most important moving parts of an enterprise-scale app containing more than
90,000 lines of code.

286 | Chapter 9: Testing All the Things

To continue learning about Blazor, I encourage you to check out the following
resources:

• The official Microsoft Docs by the amazing ASP.NET Core team•
• The Awesome Blazor GitHub repository, which acts as a collection of awesome•

Blazor resources
• Blazor University (by Peter Morris), a free online Blazor site packed with educa‐•

tional content
• On-demand Blazor content from the .NET Community on YouTube•

I hope that you’ve enjoyed this book, and I hope that you’ll continue to learn and
grow as a developer. All in all, Blazor is a very well-suited web application framework.
To me, .NET has a huge advantage over other programming languages and platforms,
as I have shown throughout this book. I hope that my love for this stack will shine
through. Thank you for giving me this opportunity to walk you through Learning
Blazor!

Summary | 287

https://oreil.ly/eiO9A
https://oreil.ly/icivq
https://oreil.ly/02X21
https://oreil.ly/9UAnV

APPENDIX

Learning Blazor App Projects

In this book, we’ve examined Learning Blazor, an app created for the book. The app
consists of several projects that serve as isolated bits of functionality. The architecture
is discussed in “Perusing the “Learning Blazor” Sample App” on page 19. The source
code can be found on GitHub.

The learning-blazor.sln solution file contains several projects that together make up
the entire application as a cohesive unit. While each project within the solution is
responsible for its core functionality, orchestrating projects with disparate functional‐
ity cohesively is a requirement of any successful application. The following sections
list the primary projects within the solution and provide topical details about them.

Web Client
The client application, named simply Web.Client, is a Blazor WebAssembly project
targeting the Microsoft.NET.Sdk.BlazorWebAssembly software development kit
(SDK). The web project is responsible for all of the user interactions and experiences.
Through pages, client-side routing, form validation, model binding, and component-
based UIs, the Web.Client project shows the most major features of Blazor. This app
defines a Learning.Blazor namespace.

Mindfulness and Poise
The Blazor WebAssembly hosting model means that your C# code is served to the
client browser. What do we tell ourselves about clients? “We must always assume the
potential for malicious intent.” It’s better to be safe than sorry. Just as you’d avoid
putting sensitive data like API keys, passwords, and private tokens into JavaScript,
you should bring a sense of mindfulness to the client code you write in Blazor.

289

https://oreil.ly/learning-blazor-code

Web API
The client application would be rather boring if not for data. How do web apps get
data, you might ask? HTTP is the most common approach, but in addition to that,
our application is also going to make use of ASP.NET Core SignalR with Web Sockets
for real-time web functionality.

ASP.NET Core SignalR is an open source library that simplifies
adding real-time web functionality to apps. It’s used in the sample
source code to exemplify real-time functionality. For an overview
of SignalR, see Microsoft’s overview of ASP.NET Core SignalR.

Again, the sample app uses the Blazor WebAssembly hosting model, but it’s still
valuable to show real-time web functionality. As such, ASP.NET Core SignalR is used,
but not in the same way that was previously described when using the Blazor Server
hosting model.

There is an ASP.NET Core Web API project, named Web.Api, which targets
Microsoft.NET.Sdk.Web. The project will offer up various endpoints on which the
client app will rely. The API and SignalR endpoints will be protected by Azure Active
Directory (Azure AD) business-to-consumer (B2C) authentication.

The Web API project uses an in-memory cache to ensure a responsive experience.
Selective endpoints rely on services that will deterministically yield data from either
the cache or the raw-HTTP-dependent endpoint.

Pwned Web API
The Pwned Web API project also relies on the Microsoft.NET.Sdk.Web SDK. This
project exposes the “Have I Been Pwned” service functionality from Troy Hunt. After
a user has provided consent to allow the application to use their email address, it is
sent to the Pwned service. The API provides details that are used to notify the user if
their email has been a part of a data breach.

Web Abstractions
With a simple C# class library project targeting Microsoft.NET.Sdk, the
Web.Abstractions project defines a few abstractions that will be shared between
the client and server apps. These contracts will serve as the glue for the SignalR
endpoints. From the client’s perspective, these abstractions will provide a discovera‐
bility set of APIs from which the client can subscribe to events and methods with
which they can communicate back to the server. From the server’s perspective, these
abstractions solidify the method and event names, ensuring that there are not any

290 | Appendix: Learning Blazor App Projects

https://oreil.ly/TrV3W
https://oreil.ly/X0G2E

possible misalignments. This is extremely important and a common pitfall in all
JavaScript-based SPA development.

Web Extensions
In modern C# application development, it’s common to encapsulate repetitive sub‐
routines into extensions. Due to their repetitive nature, utilitarian extension methods
are a perfect candidate for a shared class library-style project. In our case, we’ll use
the Web.Extensions project that targets Microsoft.NET.Sdk. This project provides
functionality that will be used throughout most of our other projects within our
solution, especially both client and server app scenarios.

Web HTTP Extensions
Another extensions class library focuses on defining defaults for the HttpClient
type. There are several shared class libraries, all of which were making HTTP calls—
I wanted all HTTP calls that fail to have a specific retry policy for handling transient
errors. These policies are defined within the Web.Http.Extensions project that targets
Microsoft.NET.Sdk.

Web Functions
Serverless programming has become very prevalent over the past decade. Immuta‐
ble infrastructure, resiliency, and scalability are always highly sought-after features.
Azure Functions are used to wrap my weather services. I decided to use the Open
Weather Map API, which is free, supports multiple languages, and is rather accurate.
With an Azure Function app, I can encapsulate my configuration, protect my API
keys, use dependency injection, and delegate calls to the weather API. This project is
named Web.Functions, and it targets Microsoft.NET.Sdk.

Web Joke Services
Life is too short not to enjoy it—we need to laugh more, crack a smile, and not take
ourselves so seriously. The Web.JokeServices library is responsible for aggregating
jokes on a pseudorandom schedule. There are collectively three separate and free joke
APIs that are aggregated in this project:

• Internet Chuck Norris Database•
• I Can Haz Dad Joke•
• Random Programming Joke API•

Learning Blazor App Projects | 291

https://oreil.ly/Dmf7N
https://oreil.ly/LMitC
https://oreil.ly/U67QS

Web Models
The Web.Models project is a shared library used by many other projects in the
solution. It contains all of the models used to represent various domain entities, such
as shared models by services and clients alike. Anything in the app that is interacted
with specifies a shape and has members that help to uniquely identify itself. This is, of
course, at the core of object-oriented programming.

Web Twitter Components
To exemplify component library functionality, I chose to create a Twitter component
Razor library. It’s named Web.TwitterComponents, and the project relies on the
Microsoft.NET.Sdk.Razor SDK. It provides two components, one representing a
tweet and the other representing a collection of tweets. This project will demonstrate
how components are templated; it shows a parent-child hierarchy relationship. It
shows how components can use JavaScript interop and update from asynchronous
events.

Web Twitter Services
The Web.TwitterServices project is consumed by the Web.Api project, not the
Web.TwitterComponents project. The Twitter services are used in the context
of background service. Background services provide a means for managing long-
running operations that function outside the request and response pipeline. As is
the case with tweet streaming, as filtered tweets occur in real time, our services will
propagate them accordingly.

292 | Appendix: Learning Blazor App Projects

Index

A
access tokens, 105
Active Server Pages (ASP), 1
ActorAction, 195
ActorMessage, 195
Actors.cs, 195
AdditiveSpeechComponent, 76, 117-121
AdditiveSpeechComponent.razor, 117-118
AdditiveSpeechComponent.razor.cs, 118-120
AddLocalization(), 140
AddMessagePackProtocol, 179
AddPwnedServices extension method, 69
AgreesToTerms property, 243
AI (artificial intelligence), 12
API (application programming interface), 207

(see also Web APIs)
BOM (Browser Object Model), 206
DOM (Document Object Model), 206
ReactiveX, 259
Storage, 207

api/jokes endpoint, 78
ApiAccessAuthorizationMessageHandler, 33
ApiAccessAuthorizationMessageHandler.cs,

106-107
App component, 36
app element, 31
app.js, 58-59, 101
App.razor file, Web.Client project, 35-36
app.speak method, 122
AppInMemoryState, 33
AppInMemoryState.cs, 48-50
AppInMemoryState.cs class, 224-225
application programming interface (see API)
applications

hosting as static web app, 24
iconography, 29
initial page, requesting, 24-25
startup, 25-31
state, in-memory methodology, 48-50
template, running, 16

appsettings.json, 64
AreYouHumanMath.cs, 134-137
Arrange-Act-Assert testing pattern, 271
artificial intelligence (AI), 12
ASP (Active Server Pages), 1
ASP.NET Core, 2

hosted solution, 4
performance as a feature, 2
standalone model, 4

ASP.NET Core SignalR (see SignalR)
ASP.NET Model View Controller (MVC), 2
ASP.NET Web Forms, 1
async keyword, 82
asynchronous code, 82
@attribute directive, 155
AudioDescriptionComponent.cs, 225-227
AudioDescriptionComponent.razor file, 227
AudioDescriptionModalComponent.cs,

228-229
AudioDescriptionModalComponent.razor,

229-231
authentication, 62, 105

access token, 105
Azure AD B2C, 61
codes, 105
CORS, 71
flow states, 109
JWT (JSON Web Token), 61

293

middleware, 179
SharedHubConnection, 185-186
tokens, 63, 170
user flow, 106

Authentication.razor, 108-110
Authentication.razor.cs, 111-113
authorization, 62, 73

access token, 105
client experience, 108-113
codes, 105
middleware, 71

AuthorizationMessageHandler, 106-113
Authorize attribute, 155
AuthorizeView component, 52, 74
await keyword, 82
Azure Active Directory (AD) business-to-

consumer (B2C), 53, 61, 68, 69
Azure Functions, 5
Azure Static Web Apps, 4
AzureAdB2C, 69
AzureAuthenticationTenant class, 107
AzureAuthenticationTenant.cs, 108
AZURE_TRANSLATOR_ENDPOINT, 153
AZURE_TRANSLATOR_REGION, 153
AZURE_TRANSLATOR_SUBSCRIP‐

TION_KEY, 153

B
BackgroundService, 175
Blazor

history, 1-3
naming, 2
reasons to adopt, 7-14

Blazor Hybrid, 6
Blazor Server, 3-4

TTI (Time to Interactive), 25
Blazor WebAssembly, 4-5

chats, 168
loading, 30
TTI (Time to Interactive), 25
Twitter streams, 168

Blazor.Geolocation.WebAssembly, NuGet pack‐
age, 217

Blazor.SourceGenerators project, 209
localStorage extension methods, 210
NuGet package, 212

Blazor.SpeechRecognition.WebAssembly
library, 253

blazor.webassembly.js file, 4, 31

blazorators, 206
localStorage API, JavaScript interop, 207
TypeScript and, 207

blazorators.geolocation.js file, 221-223
blazorators.speechRecognition.js, 253-255
<body> nodes, 29
BOM (Browser Object Model) API, 206
boot subroutine, 31
bootstrapping, 25-31
breach endpoints, 71
breaches, Have I Been Pwned (HIBP) API, 63
Breaches.razor, 158
Breaches.razor.en.resx, 160-161
Browser Object Model (BOM) API, 206
Build method, 185
build-validation.yml, 17, 285-286
builder pattern, 67, 185, 273
builder.Build(), 67
builder.Configuration, 69
Bulma, 28
bUnit testing library, 276

C
C#, 6
C# source generator, 205

localStorage API, 209-215
callbacks

delegates, 217
method signatures, 217
PositionCallback, 216
SpeechRecognitionCallbackRegistry, 261
SpeechRecognitionSubject, 261

cancelPendingSpeech method, 122
CanLoginWithVerifiedCredentials test, 283
cascading state, 36
<CascadingAuthenticationState> component,

36
<CascadingValue> component, 36
chat

SharedHubConnection, 187-189
SignalR, 168

Chat page, 193
chat room functionality, 193
Chat.razor, 191-193
Chat.razor.cs, 197-199
Chat.razor.Debounce.cs, 201-203
Chat.razor.Messages.cs, 199-201
ChatMessageComponent.razor, 196-197
ChatMessageComponentTests.razor, 276-279

294 | Index

ChildContent component, 143
chrome, 124
Chrome end-to-end tests, 280
ChuckNorrisJokeService, 84
CI/CD (continuous integration/continuous

delivery), 19
claims, 63, 106

authenticated users, 63
key/value pairs (KVPs), 63

ClaimsPrincipal extension method, unit testing,
272-275

ClaimsPrincipalExtensions.cs, 271-272
ClaimsPrincipalExtensionsTests.cs, 273-275
ClaimsPrinciple object, 63
class libraries, component writing, 253
classes

internal sealed classes, 214
static, 108

client culture, 34-35
ClientVoicePreference property, 225
ClientVoicePreference.cs class, 224
cloning, repository, 17
CLR (common language runtime), 67
CoalescingStringLocalizer, 33
CoalescingStringLocalizer.cs, 141-142
CoalescingStringLocalizer<T> object, 142
code

duplicating, 116
reuse, 10-11
source code storage, 17-19
unit-testable, 270-272

code analyzers, 12
code generators, 12
common language runtime (CLR), 67
component hierarchies, 124-129
component inheritance, 47
component lifecycle, 39
component models, defining, 236-237
component shadowing, 45, 47
component testing, 276-279
components

bUnit testing library, 276
custom, 123-124
Razor, 124
writing, class libraries, 253

Components directory, 52
Components/IntroductionComponent.razor.cs,

75
ConcurrentDictionary, 263

conditional rendering of UI elements, 99
Configure method, 180
Configure(IApplicationBuilder app, IWebHos‐

tEnvironment env), 178
ConfigureHandler method, 107
ConfigureServices, 33
ConfigureServices extension method, 113-117
ConfigureServices(IServiceCollection services),

178
construction injection, 37
Contact form

base.User instance, 249
fields, 244
implementing, 240-252
user inputs, 235

Contact.cshtml Razor file, 240-244
Contact.razor.cs, 247-249
ContactComponentModel.cs, 236-237
contextual RPC, 174-176
continuous integration/continuous delivery

(CI/CD), 19
Coordinates object, 98
CORS (cross-origin resource sharing), 69

authentication, 71
Credentials type, populating, 280
cross-origin resource sharing (see CORS)
CSS libraries, Bulma, 28
CultureService, 33
custom components, 123-124

D
DadJokeService, 84
data annotations, 235-239
data nodes, 77
debounce algorithm, 194
DefaultSpeechRecognitionService class, 258
DefaultSpeechRecognitionService.cs, 256-259
Delphi, 6
dependency injection (see DI)
dev-cert, 15
development environment, 33
DI (dependency injection), 32

container, services, 64
directives

@attribute, 155
@inherits, 41
@inject, 88
@page, 74, 191

disabled elements, 234

Index | 295

Dispose method, 48
DisposeAsync, 256
<div> element, 31
DNA (Dot Net Anywhere), 3
Document Object Model (DOM), 3

API, 206
event handlers, 118

DOMTimeStamp, 217
Dot Net Anywhere (DNA), 3

E
ECMAScript standards, 7, 206
Edge end-to-end tests, 280
EditContext, 236
EditContextExtensions.cs, 245-246
EditForm, 234, 242
EmailAddress property, 242
end-to-end testing, Playwright, 279-284
endpoints

api/jokes, 78
breach endpoints, 71
hub, configuration, 177-181
passwords, 71

mapping, 72
route handlers, 72

EnumerableExtensions.cs, 87-88
Error.razor, 36-37
ErrorBoundary component, 143
ErrorContent component, 143
event binding, 129-137
events

DOM, handlers, 118
OnSpeechRecognized, 259
push events, 286
server-side, 167-181

export keyword, 255
expression trees, 245
expressions, parsing, 245
extension method unit test, 272-275

F
FieldInput.razor, 250-251
FirstApp directory, 14
FirstName property, 242
Flux pattern, 50
Font Awesome kit, 29
footers, 43-48
form element, 233
form submission, 266-268

forms
components, 234-235
Contact, 240-252

EditForm, 234
fields, 244

submitting, 233

G
GeoCode object, 98

weather component and, 98
Geolocation API

JavaScript API, 216
NuGet package, 215
source generating, 215-223

GeolocationCoordinates, 217
GeoLocationService, 33
GeoLocationServices.g.cs, 220-221
GetBreachHeadersForAccountAsync method,

72
getClientPrefersColorScheme, 58
GetPwnedPasswordAsync method, 72
GetTestCredentials method, 283
GetValidityCss method, 247
.github/workflows/build-validation.yml
GitHub

Action Marketplace, 151
Actions

translation automation, 151-154
workflow, 153

open source software and, 14
GitHub Copilot, 12
.github/workflows/build-validation.yml, 17,

285-286
globalization, 139

H
Have I Been Pwned API (see HIBP API)
HaveIBeenPwned.Client, 66
HeadContent, 54
headers, 43-48
Hejlsberg, Anders, 6
HIBP (Have I Been Pwned) API

breaches, 63
client services, 65-73
clients, 65
passwords, 63
pastes, 63

HibpOptions, 64
hosting

296 | Index

Blazor Hybrid, 6
Blazor Server, 3-4
Blazor WebAssembly, 4-5

hot-swap on load, 29
HttpClient, 33, 116
HTTPS redirection, 71
Hub class, 170
hub endpoint, configuration, 177-181
Hunt, Troy, 63

I
IAsyncDisposable, 256
icndb (Internet Chuck Norris Database), 77
IConfiguration extension method, 115
IConfiguration object, 64
iconography, 29
identity, 62

authentication, 62
IGeoLocationService.g.cs, 218-219
IHubContext, 174
IJokeService implementation, 81
IJSInProcessRuntime, 100, 116

JavaScript interop, 214
IJSRuntime, 100
IJSUnmarshalledRuntime, 100
ILocalStorageService

DI system and, 212
examples, 223-231
localStorage API, 212
source generator, 212

ILocalStorageService.cs, 209
ILocalStorageService.g.cs, 210-211
in-memory app state, 48-50
index.html, 31
@inherits directive, 41
initial page, requesting, 24-25
InitializeModuleAsync method, 259
@inject directive, 88
InjectAttribute, 88
inner-process communication, 174-176
IntelliCode, 12
IntelliSense, 12
internal interface types, 81
internal sealed classes, 214
Internet Chuck Norris Database (icndb), 77
interpolated strings, 107
IntroductionComponent, 75-77
IntroductionComponent.razor, 76
IntroductionComponent.razor.en.resx, 77

InvokeAsync method, 48
IPwnedBreachesClient, 65
IPwnedClient, 65
IPwnedPasswordsClient, 65
IPwnedPastesClient, 65
IServiceCollection extension method, 88, 115
ISpeechRecognitionService, 252, 263
ISpeechRecognitionService.cs, 255-256
IStringLocalizer, 139, 141
IStringLocalizer<T>, 141, 150
ITwitterService, 170

J
JavaScript interop

code writing, 206
IJSInProcessRuntime, 214
localStorage API, 207
synchronous methods, 206

JoinChat method, 172
JokeComponent, 77-89
JokeComponent.razor, 78-80
JSAutoGenericInterop, 208
JSAutoGenericInteropAttribute, 209
JSON Web Token (JWT), 61
JSRuntimeExtensions.cs, 56-57, 99-101,

120-121
JWT (JSON Web Token), 61
JwtBearerOptions, 69

K
Kestrel, 2
key/value pairs (KVPs), 201

claims, 63, 106
ConcurrentDictionary, 263
localization functionality, 52

L
lambda expressions, 65
language selection component, 143-151
languages

Learning Blazor app, 140
translation, GitHub Actions, 151-154

LanguageSelectionComponent.razor, 144-146
LanguageSelectionComponent.razor.cs,

147-149
LanguageSelectionComponent.razor.en.resx,

150

Index | 297

LanguageSelectionComponent.razor.es.resx,
150

LastName property, 242
LayoutComponentBase class, 41
lazy loading, 25
LDAP (lightweight directory access protocol),

36
Learning Blazor app, 19-20

authorization message, 106-113
chats, 168
chrome, 124
HIBP API, client services, 65-73
IntroductionComponent, 75-77
JokeComponent, 77-89
JokeComponent.razor, 78
languages, 140
localization

language selection component, 143-150
services, registering, 141

native speech synthesis, 117-124
Pwned functionality, 63-65
resources, access restriction, 73-74
Twitter streams, 168

learning-blazor directory, 17
learning-blazor.sln solution file, 289
Learning.Blazor.Extensions, 116
Learning.Blazor.Http.Extensions namespace, 89
Learning.Blazor.PwnedApi namespace, 66
LeaveChat method, 172
lib.dom.d.ts file, types, 208
lightweight directory access protocol (LDAP),

36
loading indicator, 31
LoadingIndicator component, 110
LocalizableComponentBase.cs class, 52
localization, 139-140, 154

Learning Blazor app
language selection component, 143-150
services, registering, 141

Pwned.razor, 154-165
request localization, 180
Web.api project, 180
WebAssembly app, 140-142

localized resources, 75, 77
localStorage API, 207

source generating, 209-215
LocalStorageService.g.cs, 212-214
LocalStorageServiceCollectionExtensions.g.cs,

215

LoginDisplay component, 51-53
LoginDisplay.cs, 52
LoginTests.Chromium.cs, 280
LoginTests.cs, 282-283
LoginTests.Firefox.cs, 281-282
LoginTests.Utilities.cs, 279-280

M
machine-translation.yml, 151-153
MainLayout.razor, 40-42
MainLayout.razor.cs, 46-48
MapBreachEndpoints method, 72
MapPwnedEndpoints extension method, 69
MapPwnedPasswordsEndpoints method, 72
Message property, 243
MessagePack protocol, 178
methods

AddPwnedServices extension method, 69
AddSignalR extension method, 179
app.speak, 122
Build, 185
cancelPendingSpeech, 122
Configure, 180
ConfigureHandler, 107
ConfigureServices extension method,

113-117
Dispose, 48
GetBreachHeadersForAccountAsync, 72
GetPwnedPasswordAsync, 72
GetValidityCss, 247
IConfiguration extension method, 115
InitializeModuleAsync, 259
InvokeAsync, 48
IServiceCollection extension method, 88,

115
JoinChat, 172
LeaveChat, 172
MapBreachEndpoints, 72
MapPwnedEndpoints extension method, 69
MapPwnedPasswordsEndpoints, 72
OnInitialized, 39, 47
OnInitializedAsync, 80
OnSpokenAsync, 120
PostOrUpdateMessage, 172
ProcessError, 37
RandomOrder extension method, 87
RefreshJokeAsync, 80
StartAsync, 184, 187
StateHasChanged, 48

298 | Index

ToggleUserTyping, 172
window.matchMedia, 53
WithClaim, 273
WithUrl method overload, 185

Microsoft Authentication Library (MSAL), 33,
116

Microsoft.JSInterop namespace, 209
modal modularity, 124-129
ModalComponent, 124-129
ModalComponent.razor, 125-126
ModalComponent.razor.cs, 126-129
Model View Controller (MVC), 2
models, component models, 236-237
Mono .NET runtime, 9
MSAL (Microsoft Authentication Library), 33,

116
MsalAuthentication, 33
MVC (Model View Controller), 2

N
namespaces

declaration, 83
Learning.Blazor.Extensions, 116
Learning.Blazor.Http.Extensions, 89
Learning.Blazor.PwnedApi, 66
Microsoft.JSInterop, 209
Rendering, 112
type declaration, 256

native speech synthesis, 117-124
NavBar.razor, 42-43
navigation, 36
Navigation service, 52
NavLink, 42
.NET

SDKs (software development kits), 177
SerialPort class, 8

.NET CLI, 13
app creation, 14-16

.NET Framework, 1

.NET Multiplatform App UI, 6
notification object, 170
NotificationHub object, 169, 174

mapping to endpoint, 177
NotificationHub.Chat.cs, 170-172
NotificationHub.cs, 169-170
NotificationHub.Tweets.cs, 172-174
notifications, actionable, 191
NuGet package, 140, 181, 212

Blazor.Geolocation.WebAssembly, 217

Geolocation API, 215
nullable types, 83

O
OBD (onboard diagnostics) protocols, 8
object-relational mappers (ORMs), 10
observer pattern, 260
onboard diagnostics (OBD) protocols, 8
OnInitialized method, 39, 47
OnInitializedAsync lifecycle method, 80
OnSpeechRecognized event, 259
OnSpokenAsync method, 120
open source software, 13-14
ORMs (object-relational mappers), 10

P
@page directive, 74, 191
PageFooter.razor.cs, 45
PageTitle component, 74
Parameter attribute, 37
passwords

endpoints, 71
mapping, 72

HIBP API, 63
Passwords.razor, 161-165
Passwords.razor.en.resx, 165
pastes, HIBP API, 63
patterns

builder pattern, 273
observer, 260
service locator, 34

performance as a feature, 2
PeriodicTimer, 98
Playwright library, 279-284
plug-in-based architecture, 10
PositionCallback, 216
PostOrUpdateMessage method, 172
Privacy page, 45
ProcessError method, 37
Program.cs, 32, 67
progressive web apps (PWAs), 1, 31
property injection, 37
public partial interface, 210
push events, 286
PWAs (progressive web apps), 1, 31
Pwned functionality, 63-65
Pwned Web API, 290
pwned-client library, 64
Pwned.razor, 154-155

Index | 299

Pwned.razor.cs, 155
Pwned.razor.en.resx, 156-158

Q
questionable string, 83

R
Random.Shared instance, 88
RandomOrder extension method, 87
Razor, 2

(see also specific Razor files)
class libraries, 252
code context, 76
components, 124
expression trees, 245
expressions, 54
files, template application, 15
JavaScript API, 207
libraries, 212
Pages, 2
project creation, 123
syntax, 80
view engine, 2

Reactive Extensions, Rx.NET, 260
ReactiveX API, 259
readonly elements, 234
real-time data

SharedHubConnection, 190-203
SignalR and, 190-203
Web.Client project, client configuration, 181

RedirectToLogin, 39
refactoring, 12
RefreshJokeAsync method, 80
RegexEmailAddress, 237
registering services, 33
remote procedure call (see RPC)
RemoteAuthenticatorView, 109
RenderFragment, 37
Rendering namespace, 112
RenderTreeBuilder, 37
repository, cloning, 17
request localization, 180
resources

access restriction, 73-74
localized resource files, 77

.resx files, 140
root node, 77
Router, 38
RPC (remote procedure call), 168

contextual, 174-176
Rx.NET, Reactive Extensions, 260

S
Sanderson, Steve, 3
<script> tags, 31
scripts, 29
SDKs (software development kits), .NET and,

177
<section> element, 42
security, 10
Send button, 243
serialization, customizable, 214
server-side events, 167-181
service locator pattern, 34
Services property, 34
services, registering, 33
Shared class, 170
shared libraries, 292
SharedHubConnection, 33

chat, 187-189
connection

authentication, 185-186
initiation, 186-187

fields, 184
real-time data, components and, 190-203
states, 184
tweets, 189-190

SharedHubConnection class, 181
SharedHubConnection.Chat.cs, 187-189
SharedHubConnection.Commands.cs, 186-187
SharedHubConnection.cs, 182-185
SharedHubConnection.Tokens.cs, 185-186
SharedHubConnection.Tweets.cs, 189-190
SharedResource object, 141
SignalR, 167, 290

AddSignalR extension method, 179
chats, 168
hub definition, 169
NotificationHub, 174
real-time data, 190-203
server-side events, 167-181
Startup.ConfigureServices.cs, 178-179
Twitter streams, 168
UseEndpoints, 181

SignalR HubConnection, 33
single-page application (see SPA)
software development kits (SDKs), .NET and,

177

300 | Index

source code (see code)
source generators

blazorator, 206
C#, 205

localStorage API, 209-215
compilation object

C# source files, 205
retrieving, 205

Geolocation API, 215-223
GeolocationPosition, 217
GeolocationPositionError, 217
IGeoLocationService.g.cs, 218-219
ILocalStorageservice, 212
LocalStorageService.g.cs, 212-214
LocalStorageServiceCollectionExten‐

sions.g.cs, 215
SPA (single-page application)

frameworks, 1
JavaScript, 6-7

speech recognition
Blazor.SpeechRecognition.WebAssembly

library, 253
implementing, 252-266

SpeechRecognition, storage, 254
SpeechRecognitionCallbackRegistry.cs, 261-263
SpeechRecognitionSubject, applying to compo‐

nents, 263-266
SpeechRecognitionSubject.cs, 260-261
SpinnerComponent, 92
Stack Overflow, 6
StartAsync method, 184, 187
startup

client culture detection, 34-35
objects, methods, 178

Startup.Configure.cs, 179-180
Startup.ConfigureServices.cs, 178-179
Startup.cs, 178
StateHasChanged method, 48
statement completion, 12
static classes, 108
Storage API, 207
StorageKeys static class, 35
strings, interpolated, 107
Subject property, 243
@switch control structure, 92

T
TAP (task-based asynchronous pattern), 82
target frame moniker (TFM), 67

task-based asynchronous pattern (TAP), 82
templates

@page directive, 74
compiling, 15
running, 16

Terms and Conditions page, 45
testing

Arrange-Act-Assert pattern, 271
CanLoginWithVerifiedCredentials, 283
component testing, 276-279
end-to-end testing, Playwright, 279-284
execution, automating, 284-286
reasons for, 269
unit testing, 269

code functionality, 270
extension method unit test, 272-275
unit-testable code, 270-272

Web.Extensions.Tests project, 271
TFM (target frame moniker), 67
ThemeIndicatorComponent.razor, 53-54
ThemeIndicatorComponent.razor.cs file, 54-55
themes, 53-59
Time to Interactive (TTI), 24, 25
ToggleUserTyping method, 172
tooling, 11-13
TTI (Time to Interactive), 24, 25
Turbo Pascal, 6
Twitter

SharedHubConnection, 189-190
SignalR, 168

TwitterWorkerService as hosted service, 177
TwitterWorkerService.cs, 174-176
type declaration, namespaces, 256
types, nullable, 83
TypeScript, 6

blazorators and, 207
C# code, 208
interface declaration, 216

U
UI, conditional rendering, 99
unit testing, 269

code functionality, 270
extension method unit test, 272-275
unit-testable code, 270-272

UseAuthentication, 181
UseAuthorization, 181
UseEndpoints, SignalR and, 181
UX

Index | 301

loading indicator, 31
model app, 61
visual cues, 30

V
validation errors, clearing, 251
VerificationModalComponent, spam filter and,

243
VerificationModalComponent.cs, 132-134
VerificationModalComponent.razor, 129-131
version control, 17

W
WeatherComponent, 89-102
WeatherComponent.razor, 90-92
WeatherComponent.razor.cs, 94-99
WeatherCurrentComponent, 89
WeatherCurrentComponent.razor, 92-93
WeatherDailyComponent, 89
WeatherDailyComponent.razor, 93-94
Web APIs, 207
Web.Abstractions project, 290
Web.Api, 290
Web.Api server project, 174-181

localization, 180
Web.Api.csproj, 177-178
Web.Client project, 289

client configuration, 181
resources files, 140
WebAssemblyHostBuilderExtensions class,

215

Web.Client.EndToEndTests, LoginTests.Utilit‐
ies.cs, 279-280

Web.Extensions project, 67, 291
ClaimsPrincipalExtensions.cs, 271-272

Web.Extensions.Tests project, 271
Web.Functions project, 291
Web.Http.Extensions project, 67, 291
Web.JokeServices library, 291
Web.Models project, 292
Web.PwnedApi.csproj, 65-67
Web.TwitterComponents project, 292
Web.TwitterServices project, 292
WebApiOptions object, 116
WebApplicationBuilderExtensions.cs, 68-69
WebApplicationExtensions.cs, 69-73
WebApplicationsBuilder, 67
WebAssembly, 2, 9
WebAssembly app, localization, 140-142
WebAssemblyHostBuilderExtensions.cs,

113-117
WebAssemblyHostExtensions.cs, 34
WebForms, 1
window.localStorage, 207
window.matchMedia method, 53
WinForms, 8
WithClaim method, 273
WithUrl method overload, 185
wwwroot folder, 253

302 | Index

About the Author
David Pine is a senior content developer at Microsoft, where he focuses on .NET
and Azure developer content. He is recognized as a Google Developer Expert in
Web Technologies and is a Twilio Champion. Before joining Microsoft, David was
a Microsoft MVP in Developer Technologies for several years. David thrives in the
developer community, actively sharing knowledge through speaking engagements
around the world. He advocates for open source as a member of the .NET Foun‐
dation and has contributed to the .NET runtime and ASP.NET Core repositories,
among many others. As a host of the revamped On .NET Live show, David invites you
to immerse yourself and share experiences with the .NET community live.

David’s notable open source projects:

• Learning Blazor: complete app from this book
• Azure Cosmos DB Repository .NET SDK
• Resource Translator GitHub Action
• “Have I Been Pwned” .NET Client
• Blazorators—C# Source Generator for Blazor

To keep up with David:

• Twitter: @davidpine7 and @blazorbits
• GitHub
• David’s website
• LinkedIn
• Stack Overflow
• dev.to

Colophon
The animal on the cover of Learning Blazor is a shoebill (Balaeniceps rex), commonly
known as the whalehead, whale-headed stork, and shoebill stork. So named for
their large, bulbous bill, which has been described as looking like a wooden clog,
shoebills inhabit the freshwater swamps of central Africa, ranging from South Sudan
to Zambia.

Once considered members of the stork family, shoebills are now classified in a family
of their own (Balaenicipitidae) and are more closely related to pelicans and herons
than to storks. Like storks, however, shoebills are known to exhibit a “bill clattering”
communication behavior that’s been described as sounding like a machine gun.

https://oreil.ly/X5o1G
https://oreil.ly/learning-blazor-code
https://oreil.ly/wpnL9
https://oreil.ly/Fd83y
https://oreil.ly/HC4Yw
https://oreil.ly/qYCnW
https://oreil.ly/6IRrt
https://oreil.ly/3nWEo
https://oreil.ly/jhChj
https://oreil.ly/yUtjv
https://oreil.ly/xcyX4
https://oreil.ly/boFDR
https://oreil.ly/RWx7t

Shoebills are large birds, standing 3.5 to 4.5 feet tall and boasting an 8-foot wingspan.
Their clog-like bill can reach up to 24 cm in length and 20 cm in width. Despite
its somewhat cartoonish appearance, the beak of the shoebill has razor-sharp edges,
helping earn shoebills a reputation for frequently beheading their prey.

Shoebills employ a “freeze and seize” strategy for hunting, standing motionless for
long periods of time and then lunging onto prey. Largely piscivorous, shoebills favor
lungfish and other fish as their primary source of food but have also been known to
feed on rodents, snakes, frogs, turtles, and even small crocodiles.

IUCN has categorized the shoebill as being vulnerable due to recent declines in popu‐
lation caused, in part, by destruction of habitat and hunting. Many of the animals on
O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Histoire Naturelle. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Table of Contents
	Foreword
	Preface
	Why Blazor?
	Who Should Read This Book
	For .NET Developers
	For Web Developers

	Why I Wrote This Book
	How to Use This Book
	Roadmap and Goals of This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Blazing into Blazor
	The Origin of Blazor
	Blazor Hosting
	Blazor Server
	Blazor WebAssembly
	Blazor Hybrid

	Single-Page Applications, Redefined
	Why Adopt Blazor
	.NET’s Potential in the Browser
	.NET Is Here to Stay
	Familiarity
	Safe and Secure
	Code Reuse
	Tooling
	Open Source Software

	Your First Blazor App with the .NET CLI
	Build the App
	Install Dev-cert
	Run the App

	The Code Must Live On
	Perusing the “Learning Blazor” Sample App
	Summary

	Chapter 2. Executing the App
	Requesting the Initial Page
	App Startup and Bootstrapping
	Blazor WebAssembly App Internals
	Detecting Client Culture at Startup
	Layouts, Shared Components, and Navigation

	Summary

	Chapter 3. ​​Componentizing
	Design with the User in Mind
	Leveraging “Pwned” Functionality
	“Have I Been Pwned” Client Services
	Restricting Access to Resources

	The Introduction Component Says “Hi”
	The Joke Component and Services
	Aggregating Joke Services—Laughter Ensues
	DI from Library Authors

	Forecasting Local Weather
	Summary

	Chapter 4. Customizing the User Login Experience
	A Bit More on Blazor Authentication
	Client-Side Custom Authorization Message Handler Implementation
	The Web.Client ConfigureServices Functionality

	Native Speech Synthesis
	Sharing and Consuming Custom Components
	Chrome: The Overloaded Term
	Modal Modularity and Blazor Component Hierarchies
	Exploring Blazor Event Binding

	Summary

	Chapter 5. Localizing the App
	What Is Localization?
	The Localization Process
	The Language Selection Component
	Automating Translations with GitHub Actions
	Localization in Action
	Summary

	Chapter 6. Exemplifying Real-Time Web Functionality
	Defining the Server-Side Events
	Exposing Twitter Streams and Chat Functionality
	Writing Contextual RPC and Inner-Process Communication
	Configuring the Hub Endpoint

	Consuming Real-Time Data on the Client
	Configuring the Client
	Sharing a Hub Connection
	Consuming Real-Time Data in Components

	Summary

	Chapter 7. Using Source Generators
	What Are Source Generators?
	Building a Case for Source Generators
	C# Source Generators in Action
	Source Generating the localStorage API
	Source Generating the Geolocation API
	Example Usage of the ILocalStorageService

	Summary

	Chapter 8. Accepting Form Input with Validation
	The Basics of Form Submission
	Framework-Provided Components for Forms
	Models and Data Annotations
	Defining Component Models
	Defining and Consuming Validation Attributes

	Implementing a Contact Form
	Implementing Speech Recognition as User Input
	Reactive Programming with the Observer Pattern
	Managing Callbacks with a Registry
	Applying the Speech Recognition Service to Components

	Form Submission Validation and Verification
	Summary

	Chapter 9. Testing All the Things
	Why Test?
	Unit Testing
	Defining Unit-Testable Code
	Writing an Extension Method Unit Test

	Component Testing
	End-to-End Testing with Playwright
	Automating Test Execution
	Summary

	Appendix. Learning Blazor App Projects
	Web Client
	Web API
	Pwned Web API
	Web Abstractions
	Web Extensions
	Web HTTP Extensions
	Web Functions
	Web Joke Services
	Web Models
	Web Twitter Components
	Web Twitter Services

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

